Skip to main content
Log in

Preparation and characterization of the temperature-stable CaO-Li2O-Nd2O3-TiO2 microwave dielectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The perovskite-structured CaTiO3-based microwave dielectric ceramics play an essential role in the technical field of communication. This study is intended to obtain a temperature-stable Ca-Li-Nd-Ti microwave dielectric ceramic and explore the changing mechanism of dielectric properties. So the (Ca0.61Nd0.26)1-x(Li0.5Nd0.5)xTi0.96(Al0.5Nb0.5)0.04O3 (0 ≤ x ≤ 0.8, shorted as CLNTAN) microwave dielectric ceramics were designed, prepared and characterized in this paper. All constituents form a single phase of orthorhombic perovskite. SEM images verify that the polygonal grains gradually become cubic morphology as the x value increases for CLNTAN samples. Raman spectra show a distinct blue shift of vibrational modes by increasing the x value, and the broadened Raman peaks indicate a declined tendency of Q × f value. Interestingly, the εr values of samples reach the maximum at x = 0.7, then decrease as the x value increases. This finding is related to the bond valence at B-site. In addition, the τf values of samples exhibit a decreased tendency, and the temperature-stable (τf = –1.4 ppm/°C) CLNTAN ceramic with a high εr value of 129.2 was obtained at x = 0.76 when it was sintered at 1230 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Ma, K. Song, Y. Ji, F. Hussain, A. Khesro, M. Mao, L. Xue et al., 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6–K2MoO4 composite ceramics. Ceram. Int. 47, 19241–19246 (2021)

    Article  CAS  Google Scholar 

  2. L. Li, X. Wang, W. Luo, S. Wang, T. Yang, J. Zhou, Internal-strain-controlled tungsten bronze structural ceramics for 5G millimeter-wave metamaterials. J. Mater. Chem. C. 9, 14359–14370 (2021)

    Article  CAS  Google Scholar 

  3. H. Yang, Y. Wang, X. Zhang, M. Xing, E. Li, L. Chai, Crystal structure, phase transition, vibrational spectra, and microwave dielectric characteristics of Ta5+ ionic substituted Co0.5Ti0.5NbO4 ceramics. Ceram. Int. 48, 648–655 (2022)

    Article  CAS  Google Scholar 

  4. H. Yang, S. Zhang, H. Yang, Q. Wen, Q. Yang, L. Gui, Q. Zhao et al., The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 10, 885–932 (2021)

    Article  CAS  Google Scholar 

  5. X. Chen, H. Li, P. Zhang, H. Hu, G. Chen, G. Li, A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification. J. Am. Ceram. Soc. 104, 5214–5223 (2021)

    Article  CAS  Google Scholar 

  6. Z. Xiong, B. Tang, X. Zhang, C. Yang, Z. Fang, S. Zhang, Low-fire processing and microwave dielectric properties of LB glass-doped Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 ceramic. J. Am. Ceram. Soc. 104, 1726–1739 (2021)

    Article  CAS  Google Scholar 

  7. G. Wang, Q. Fu, P. Guo, M. Hu, H. Wang, S. Yu, Z. Zheng et al., Crystal structure, spectra analysis and dielectric characteristics of Ba4M28/3Ti18O54 (M= La, Pr, Nd, and Sm) microwave ceramics. Ceram. Int. 47, 1750–1757 (2021)

    Article  CAS  Google Scholar 

  8. T. Hisakazu, B. Yoko, E. Kenichi, O. Yasuhiko, S. Kenichi, K. Kazuhiko, N. Shoichi, Dielectric characteristics of (A1/21+A1/23+)TiO3 ceramics at microwave frequencies. Jpn. J. Appl. Phys. 30, 2339 (1991)

    Article  Google Scholar 

  9. Y.J. Shan, T. Nakamura, Y. Inaguma, M. Itoh, Preparation and dielectric characterizations of the novel perovskite-type oxides (Ln1/2Na1/2)TiO3 (Ln = Dy, Ho, Er, Tm, Yb, Lu). Solid State Ionics 108, 123–128 (1998)

    Article  CAS  Google Scholar 

  10. W. Tuichai, S. Danwittayakul, N. Chanlek, M. Takesada, A. Pengpad, P. Srepusharawoot, P. Thongbai, High-performance giant dielectric properties of Cr3+/Ta5+ Co-doped TiO2 ceramics. ACS Omega 6, 1901–1910 (2021)

    Article  CAS  Google Scholar 

  11. R. Ubic, I.M. Reaney, Structure and dielectric properties of lead pyrochlores. J. Am. Ceram. Soc. 85, 2472–2478 (2002)

    Article  CAS  Google Scholar 

  12. A. Zaman, S. Uddin, N. Mehboob, A. Ali, A. Ahmad, K. Bashir, Effect of Zr4+ on the structural and microwave dielectric properties of CaTiO3 ceramics. Ferroelectrics 577, 143–152 (2021)

    Article  CAS  Google Scholar 

  13. Z. Xiong, X. Zhang, Z. Fang, W. Wu, L. Li, B. Tang, S. Zhang, Characterization of structural and electrical properties of Ca0.61Nd0.26TiO3 ceramic tailored by complex ions (Al0.5Nb0.5)4+. J. Alloy Compd. 899, 163234 (2022)

    Article  CAS  Google Scholar 

  14. C. Du, D. Zhou, R.-T. Li, H.-T. Chen, G.-H. Zhou, B. Tang, M.A. Darwish, et al., Fabrication of wideband low-profile dielectric patch antennas from temperature stable 0.65CaTiO3–0.35LaAlO3 Microwave Dielectric Ceramic. Adv. Electron. Mater. (2022)

  15. A. Zhang, H. Fan, D. Hou, F. Yang, Y. Chen, W. Wang, W. Dong, A novel low-loss (1–x)(Ca0.8Sr0.2)TiO3-xSmAlO3 microwave dielectric ceramics with near-zero temperature coefficient. J. Alloy Compd. 898, 162809 (2022)

    Article  CAS  Google Scholar 

  16. S.-H. Lin, Z.-Q. Lin, C.-W. Chen, Microwave dielectric characterization of Ca0.6(La1-xYx)0.2667TiO3 perovskite ceramics with high positive temperature coefficient. Ceram. Int. 47, 16828–16832 (2021)

    Article  CAS  Google Scholar 

  17. Y. Yu, Y. Wang, W. Guo, C. Zhu, A. Ji, H. Wu, S. Liang et al., Grain size engineered 0.95MgTiO3–0.05CaTiO3 ceramics with excellent microwave dielectric properties and prominent mechanical performance. J. Am. Ceram. Soc. 105, 299–307 (2022)

    Article  CAS  Google Scholar 

  18. Y. Zhang, X. Jiang, S. Ding, T. Song, Microwave dielectric property adjustment of CoZrNb2O8 ceramics by CaTiO3 addition. J. Mater. Sci. Mater. Electron. 32, 12661–12670 (2021)

    Article  CAS  Google Scholar 

  19. D. Wang, S. Zhang, G. Wang, Y. Vardaxoglou, W. Whittow, D. Cadman, D. Zhou et al., Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas. Appl. Mater. Today. 18, 100519 (2020)

    Article  Google Scholar 

  20. J. Fan, K. Du, Z.-Y. Zou, C.-Z. Yin, Y.-B. Guo, F. Wang, Q. Zhao et al., Impedance spectroscopy, B-site cation ordering and structure–property relations of (1–x)La[Al0.9(Mg0.5Ti0.5)0.1]O3–xCaTiO3 ceramics for 5G dielectric waveguide filters. Ceram. Int. 47, 15319–15327 (2021)

    Article  CAS  Google Scholar 

  21. Z. Wang, F. Pan, L. Liu, Q. Du, R. Tang, J. Ai, H. Zhang et al., Enhanced microwave dielectric properties and sintering behaviors of Mg2SiO4-Li2TiO3-LiF ceramics by adding CaTiO3 for LTCC and GPS antenna applications. Crystals 12, 512 (2022)

    Article  Google Scholar 

  22. I.S. Kim, W.H. Jung, Y. Inaguma, T. Nakamura, M. Itoh, Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system [(1–x)La2/3TiO3-xCaTiO3 (01 ≤ x ≤ 096)]. Mater. Res. Bull. 30, 307–316 (1995)

    Article  CAS  Google Scholar 

  23. Y. Masashi, H. Naoki, T. Takahiro, S. Akira, Structure and dielectric properties of (Ca1-xNd2x/3)TiO3. Jpn. J. Appl. Phys. 36, 6818 (1997)

    Article  Google Scholar 

  24. W.S. Kim, E.S. Kim, K.H. Yoon, Effects of Sm3+ substitution on dielectric properties of Ca1-xSm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc. 82, 2111–2115 (1999)

    Article  CAS  Google Scholar 

  25. I. Hameed, X.Q. Liu, L. Li, M.Y. Liu, X.M. Chen, Structure evolution and improved microwave dielectric characteristics in CaTi1-x(Al0.5Nb0.5)xO3 ceramics. J. Alloy Compd. 845, 155435 (2020)

    Article  CAS  Google Scholar 

  26. A. Zaman, S. Uddin, N. Mehboob, V. Tirth, A. Algahtani, M. Abbas, M. Mushtaq et al., Structural elucidation, electronic and microwave dielectric properties of Ca(SnxTi1–x)O3, (0 ≤ x ≤ 0.8) lead-free ceramics. ACS Omega. 7, 4667–4676 (2022)

    Article  CAS  Google Scholar 

  27. F. Liu, C. Yuan, X. Liu, J. Qu, G. Chen, C. Zhou, Effects of structural characteristics on microwave dielectric properties of (Sr0.2Ca0.488Nd0.208)Ti1–xGa4x/3O3 ceramics. Mater. Res. Bull. 70, 678–683 (2015)

    Article  CAS  Google Scholar 

  28. Z. Xiong, B. Tang, F. Luo, H. Yang, X. Zhang, C. Yang, Z. Fang et al., Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. J. Alloy Compd. 835, 155249 (2020)

    Article  CAS  Google Scholar 

  29. T. Hisakazu, B. Yoko, E. Kenichi, S. Kenichi, Microwave dielectric properties and crystal structure of CaO-Li2O-(1–x)Sm2O3-xLn2O3-TiO2 (Ln: lanthanide) ceramics system. Jpn. J. Appl. Phys. 35, 5069 (1996)

    Article  Google Scholar 

  30. K.H. Yoon, Y.H. Chang, W.S. Kim, J.B. Kim, E.S. Kim, Dielectric properties of Ca1-xSm2x/3TiO3-Li1/2Ln1/2TiO3 ceramics. Jpn. J. Appl. Phys. 35, 5145–5149 (1996)

    Article  CAS  Google Scholar 

  31. J.S. Kim, C.I. Cheon, H.J. Kang, C.H. Lee, K.Y. Kim, S. Nam, J.D. Byun, Crystal structure and microwave dielectric properties of CaTiO3-(Li1/2Nd1/2)TiO3-(Ln1/3Nd1/3)TiO3 (Ln = La, Dy) ceramics. Jpn. J. Appl. Phys. 38, 5633–5637 (1999)

    Article  CAS  Google Scholar 

  32. H. Chen, C. Huang, Microwave dielectric properties and microstructures of Ca1-xNd2x/3TiO3-Li1/2Nd1/2TiO3 ceramics. Jpn. J. Appl. Phys. 41, 5650 (2002)

    Article  CAS  Google Scholar 

  33. X. Wang, Y. Liu, X. Wang, W. Lu, High permittivity and near-zero τε dielectrics Ca0.36Sr0.64TiO3-Li0.5Nd0.5TiO3 for multilayer ceramic capacitors. Jpn. J. Appl. Phys. 54, 111501 (2015)

    Article  Google Scholar 

  34. R. Lowndes, F. Azough, R. Cernik, R. Freer, Structures and microwave dielectric properties of Ca(1–x)Nd2x/3TiO3 ceramics. J. Eur. Ceram. Soc. 32, 3791–3799 (2012)

    Article  CAS  Google Scholar 

  35. B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013)

    Article  CAS  Google Scholar 

  36. R.L. Withers, L. Bourgeois, A. Snashall, Y. Liu, L. Norén, C. Dwyer, J. Etheridge, Chessboard/diamond nanostructures and the A-site deficient, Li1/2-3xNd1/2+xTiO3, defect perovskite solid solution. Chem. Mater. 25, 190–201 (2013)

    Article  CAS  Google Scholar 

  37. F. Azough, D. Kepaptsoglou, Q.M. Ramasse, B. Schaffer, R. Freer, On the origin of nanochessboard superlattices in A-site-deficient Ca-stabilized Nd2/3TiO3. Chem. Mater. 27, 497–507 (2015)

    Article  CAS  Google Scholar 

  38. A.M. Abakumov, R. Erni, A.A. Tsirlin, M.D. Rossell, D. Batuk, G. Nénert, G.V. Tendeloo, Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3–xTiO3 perovskites. Chem. Mater. 25, 2670–2683 (2013)

    Article  CAS  Google Scholar 

  39. X. Lu, Q. Li, D. Yang, Dielectric properties and sintering characteristics of CaTiO3-(Li1/2Nd1/2)TiO3 ceramics. J. Electroceram. 14, 59–65 (2005)

    Article  CAS  Google Scholar 

  40. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 32, 751–767 (1976)

    Article  Google Scholar 

  41. C.W. Tai, S.H. Choy, H.L.W. Chan, Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Li1/2)TiO3–BaTiO3 ceramics at different temperatures. J. Am. Ceram. Soc. 91, 3335–3341 (2008)

    Article  CAS  Google Scholar 

  42. C. Yuan, G. Chen, C. Zhou, Y. Yang, F. Peng, Effect of excess Li+ on microwave dielectric properties of Ca0.16Sr0.04Li0.4Nd0.4TiO3 ceramics. Int. J. Appl. Ceram. Tec. 12, E55–E63 (2015)

    Article  CAS  Google Scholar 

  43. C. Zhou, G. Chen, Z. Cen, C. Yuan, Y. Yang, W. Li, Structure and microwave dielectric characteristics of lithium-excess Ca0.6Nd0.8/3TiO3/(Li0.5Nd0.5)TiO3 ceramics. Mater. Res. Bull. 48, 4924–4929 (2013)

    Article  CAS  Google Scholar 

  44. Y. Gu, J. Huang, Q. Li, X. Ning, L. Li, X. Li, A novel low-fired and high-εr microwave dielectric ceramic BaCu(B2O5)-added 06Ca3/5La4/15TiO3–04Li1/2Nd1/2TiO3. J. Mater. Sci. Mater. Electron. 29, 11378–11383 (2018)

    Article  CAS  Google Scholar 

  45. Y. Yang, C.L. Yuan, G.H. Chen, F.W. Peng, T. Yang, Microwave dielectric properties of (Ca0.8Sr0.2)x(Li0.5Nd0.5)1-xTiO3 Ceramics. Adv. Mater. Res. 1095, 583–589 (2015)

    Article  Google Scholar 

  46. S. Lei, H. Fan, W. Chen, Z. Liu, M. Li, Structure, microwave dielectric properties, and novel low-temperature sintering of xSrTiO3-(1–x)LaAlO3 ceramics with LTCC application. J. Am. Ceram. Soc. 100, 235–246 (2017)

    Article  CAS  Google Scholar 

  47. D. Yu, J. Zhang, F. Wang, M. Zhao, K. Du, S. Shu, J. Zou et al., High-symmetry epitaxial growth under solvothermal conditions: a strategy for architectural growth of tubular and nontubular CaTiO3 microstructures with regular geometrical morphologies and tunable dimensions. Cryst. Growth Des. 13, 3138–3143 (2013)

    Article  CAS  Google Scholar 

  48. K. Nakashima, K. Onagi, Y. Kobayashi, T. Ishigaki, Y. Ishikawa, Y. Yoneda, S. Yin et al., Stabilization of size-controlled BaTiO3 nanocubes via precise solvothermal crystal growth and their anomalous surface compositional reconstruction. ACS Omega 6, 9410–9425 (2021)

    Article  CAS  Google Scholar 

  49. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, Normal mode determination in crystals. J. Raman Spectrosc. 10, 253–290 (1981)

    Article  CAS  Google Scholar 

  50. Y.-L. Tsai, E. Huang, Y.-H. Li, H.-T. Hung, J.-H. Jiang, T.-C. Liu, J.-N. Fang et al., Raman spectroscopic characteristics of zeolite group minerals. Minerals. 11, 167 (2021)

    Article  CAS  Google Scholar 

  51. Q. Liao, L. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton Trans. 41, 6963–6969 (2012)

    Article  CAS  Google Scholar 

  52. F. Jiang, S. Kojima, C. Zhao, C. Feng, Chemical ordering in lanthanum-doped lead magnesium niobate relaxor ferroelectrics probed by A1g Raman mode. Appl. Phys. Lett. 79, 3938–3940 (2001)

    Article  CAS  Google Scholar 

  53. P.P. Ma, X.M. Chen, Further ordering structural investigation of Ba((Co, Zn, Mg)1/3Nb2/3)O3 perovskites by Raman spectroscopy. Mater. Charact. 158, 109938 (2019)

    Article  CAS  Google Scholar 

  54. T. Lowe, F. Azough, R. Freer, The microstructure and microwave dielectric properties of ceramics in the system CaTiO3-Li0.5Nd0.5TiO3. J. Korean Ceram. Soc. 40, 328–332 (2003)

    Article  CAS  Google Scholar 

  55. K. Yan, T. Karaki, M. Adachi, Zero temperature compensated microwave dielectric properties of Ca0.8Sr0.2TiO3-Li0.5Ln0.5TiO3 System. Ferroelectrics. 378, 1–7 (2009)

    Article  CAS  Google Scholar 

  56. W. Wang, Z.L. Tang, Z.T. Zhang, Microwave dielectric properties of (1–x)(Ca0.61Nd0.26)TiO3-x(Li0.5Sm0.5)TiO3. Key Eng. Mater. 336–338, 287–289 (2007)

    Article  Google Scholar 

  57. C.L. Huang, J.T. Tsai, Y.B. Chen, Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li, Nd)1/2TiO3 ceramic system at microwave frequency. Mater. Res. Bull. 36, 547–556 (2001)

    Article  CAS  Google Scholar 

  58. E.S. Kim, B.S. Chun, D.W. Yoo, K.H. Yoon, Microwave dielectric properties of (1–x)(Ca0.7Nd0.2)TiO3-x(Li0.5Nd0.5)TiO3 ceramics. Mat. Sci. Eng. B. 99, 247–251 (2003)

    Article  Google Scholar 

  59. M. Zhou, H. Chen, G. Zhou, Y. He, S. Zhang, B. Tang, Co-effects of Nb2O5 and stoichiometric deviations on the microwave dielectric properties of Y3Al5O12. Ceram. Int. 48, 18651–18657 (2022)

    Article  CAS  Google Scholar 

  60. C. Feng, X. Zhou, B. Tao, H. Wu, S. Huang, Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1−x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency. J. Adv. Ceram. 11, 392–402 (2022)

    Article  CAS  Google Scholar 

  61. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  62. N. Brese, M. O’keeffe, Bond-valence parameters for solids. Acta Crystallogr Sect B 47, 192–197 (1991)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Sichuan Province Science and Technology Support Program (Grant No. 2021YJ0560), the Natural Science Foundation of Sichuan Province (2022NSFSC0524), Transfer Payment Project of Sichuan Province under Grant (R21ZYZF0001), and the Scientific Research Foundation of CUIT (Grant No. KYTZ202179).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZX and XZ. The first draft of the manuscript was written by ZX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhe Xiong or Bin Tang.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Z., Zhang, X., Wu, W. et al. Preparation and characterization of the temperature-stable CaO-Li2O-Nd2O3-TiO2 microwave dielectric ceramics. J Mater Sci: Mater Electron 34, 610 (2023). https://doi.org/10.1007/s10854-023-10028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10028-2

Navigation