Skip to main content

Advertisement

Log in

Zeolitic imidazolate frameworks derived carbon with rational porous structure mediated by polyvinylpyrrolidone applied as electrode materials for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZIF-8 is an excellent precursor or template for preparing nitrogen-doped porous carbon materials for supercapacitor electrodes. However, the porous carbon materials obtained by direct high-temperature carbonization of ZIF-8 have limited specific surface area and only microporous structure. These inhibit the electrolyte penetration and ion diffusion, which seriously affecting their electrochemical performance. In this work, nano-polyhedron nitrogen-doped porous carbon materials are prepared as electrode materials by a simple one-step heat treatment of ZIF-8 and polyvinylpyrrolidone complexes, and the effects of carbonization temperature and the content of polyvinylpyrrolidone are investigated for their capacitive performance. The introduction of polyvinylpyrrolidone in the ZIF-8 frame not only provides carbon and nitrogen sources, but also can effectively increase the specific surface area and optimizes pore size distribution after carbonization. Electrochemical tests show that the reversible specific capacitance is 296 F g−1 at the current density is 0.5 A g−1, and the capacity retention rate is 76% at 5 A g−1. Therefore, this work provides a new idea for exploring carbon material with excellent electrochemical properties for application in the field of supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. R. Fuller, P.J. Landrigan, K. Balakrishnan, G. Bathan, S. Bose-O’Reilly, M. Brauer, J. Caravanos, T. Chiles, A. Cohen, L. Corra, Pollution and health: a progress update. Lancet Planet. Health 6, e535 (2022)

    Article  Google Scholar 

  2. H. Wang, Y. Yang, L. Guo, Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 7(5), 1601709 (2017)

    Article  Google Scholar 

  3. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Article  CAS  Google Scholar 

  4. P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020)

    Article  CAS  Google Scholar 

  5. X. Li, B. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2(2), 159–173 (2013)

    Article  CAS  Google Scholar 

  6. L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12(4), 1806–1812 (2012)

    Article  CAS  Google Scholar 

  7. X. Wang, W. Zhang, Q. Zhou, F. Ran, Integrating supercapacitor with sodium hyaluronate based hydrogel as a novel all-in-one wound dressing: self-powered electronic stimulation. Chem. Eng. J. 452, 139491 (2023)

    Article  CAS  Google Scholar 

  8. Z. Li, S. Gadipelli, H. Li, C.A. Howard, D.J. Brett, P.R. Shearing, Z. Guo, I.P. Parkin, F. Li, Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5(2), 160–168 (2020)

    Article  CAS  Google Scholar 

  9. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    Article  CAS  Google Scholar 

  10. A. Leal, T. Pal, S. Rattan, M. Kaur, S. Kumar, J.K. Goswamy, Synergistic effect of reduced graphene oxide and carbon nanotubes for improved supercapacitive performance electrodes. J. Mater. Sci. 33(36), 26841–26851 (2022)

    Google Scholar 

  11. K. Li, S. Feng, C. Jing, Y. Chen, X. Liu, Y. Zhang, L. Zhou, Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 55(91), 13773–13776 (2019)

    Article  CAS  Google Scholar 

  12. K. Li, H. Teng, X. Dai, Y. Wang, D. Wang, X. Zhang, Y. Yao, X. Liu, L. Feng, J. Rao, Y. Zhang, Atomic scale modulation strategies and crystal phase transition of flower-like CoAl layered double hydroxides for supercapacitors. CrystEngComm 24(11), 2081–2088 (2022)

    Article  Google Scholar 

  13. K. Li, H. Teng, Q. Sun, Y. Li, X. Wu, X. Dai, Y. Wang, S. Wang, Y. Zhang, K. Yao, Z. Bao, J. Rao, Y. Zhang, Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J. Energy Storage 53, 105094 (2022)

    Article  Google Scholar 

  14. K. Li, C. Yin, X. Dai, J. Zhang, S. Yi, J. Rao, Y. Zhang, Facile synthesis and incomplete sulfidation of nickel-cobalt-aluminum ternary layered hydroxide binder-free electrode with enhanced supercapacitor properties. J. Energy Storage 55, 105722 (2022)

    Article  Google Scholar 

  15. W. Zheng, J. Halim, P.O.Å. Persson, J. Rosen, M.W. Barsoum, MXene-based symmetric supercapacitors with high voltage and high energy density. Mater. Rep. 2(1), 100078 (2022)

    CAS  Google Scholar 

  16. S.I. Wong, H. Lin, T. Ma, J. Sunarso, B.T. Wong, B. Jia, Binary ionic liquid electrolyte design for ultrahigh-energy density graphene-based supercapacitors. Mater. Rep. 2(2), 100093 (2022)

    CAS  Google Scholar 

  17. Y. Peng, M. Yu, L. Zhao, H. Zeng, T. He, M.K. Hadi, R. Liu, G. Cao, H. Dang, Y. Wu, F. Ran, A 3D nano-sandwich structure constructed by intercalation of aramid nanofibers preventing re-stack of graphene for high surface area electrode materials. Appl. Surf. Sci. 612, 155903 (2023)

    Article  CAS  Google Scholar 

  18. K. Li, Z. Guo, Q. Sun, X. Dai, Y. Li, K. Yao, X. Liu, Z. Bao, J. Rao, Y. Zhang, Phosphorus vacancy regulation and interfacial coupling of biotemplate derived CoP@FeP2 heterostructure to boost pseudocapacitive reaction kinetics. Chem. Eng. J. 454, 140223 (2023)

    Article  CAS  Google Scholar 

  19. J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4(3), 1900853 (2020)

    Article  CAS  Google Scholar 

  20. M. Zhou, S. Yan, Q. Wang, M. Tan, D. Wang, Z. Yu, S. Luo, Y. Zhang, X. Liu, Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met. 41(7), 2280–2291 (2022)

    Article  CAS  Google Scholar 

  21. Z. Wang, X. Zhang, X. Liu, Y. Zhang, W. Zhao, Y. Li, C. Qin, Z. Bakenov, High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 569, 22–33 (2020)

    Article  CAS  Google Scholar 

  22. H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, K. Shen, L. Kong, L. Kang, A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: Preparation, characterization and electrochemical capacitive performance. J. Energy Chem. 23(6), 684–693 (2014)

    Article  Google Scholar 

  23. Y. Liu, L. Si, X. Zhou, X. Liu, Y. Xu, J. Bao, Z. Dai, A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries. J. Mater. Chem. A 2(42), 17735–17739 (2014)

    Article  CAS  Google Scholar 

  24. Y. Song, D. Zhou, Y. Wang, C. Wang, Y. Xia, Preparation of nitrogen-containing mesoporous carbons and their application in supercapacitors. New J. Chem. 37(6), 1768–1775 (2013)

    Article  CAS  Google Scholar 

  25. S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015)

    Article  CAS  Google Scholar 

  26. X. Zhao, H. Zhao, T. Zhang, X. Yan, Y. Yuan, H. Zhang, H. Zhao, D. Zhang, G. Zhu, X. Yao, One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2(30), 11666–11671 (2014)

    Article  CAS  Google Scholar 

  27. S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22(19), 9884–9889 (2012)

    Article  CAS  Google Scholar 

  28. S. Gadipelli, W. Travis, W. Zhou, Z. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7(7), 2232–2238 (2014)

    Article  CAS  Google Scholar 

  29. C. Lai, Z. Zhang, Y. Xu, J. Liao, Z. Xu, Z. Yi, J. Xu, J. Bao, X. Zhou, A general strategy for embedding ultrasmall CoMx nanocrystals (M=S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 9(3), 1487–1494 (2021)

    Article  CAS  Google Scholar 

  30. M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang, Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem. Int. Ed. 59(7), 2688–2694 (2020)

    Article  CAS  Google Scholar 

  31. H. Jiang, B. Liu, Y. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011)

    Article  CAS  Google Scholar 

  32. Y. Wang, M. Qiao, X. Mamat, Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance. Appl. Surf. Sci. 540, 148352 (2021)

    Article  CAS  Google Scholar 

  33. M. Thomas, R. Illathvalappil, S. Kurungot, B.N. Nair, A.A.P. Mohamed, G.M. Anilkumar, T. Yamaguchi, U. Hareesh, Graphene oxide sheathed ZIF-8 microcrystals: engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction (ORR) electrocatalysis. ACS Appl. Mater. Interfaces 8(43), 29373–29382 (2016)

    Article  CAS  Google Scholar 

  34. H. Li, D. Fu, X.M. Zhang, G. Han, F. Zhang, Facile Preparation of varisized ZIF-8 and ZIF-8/polypyrrole composites for flexible solid-state supercapacitor. ChemistrySelect 2(25), 7530–7534 (2017)

    Article  CAS  Google Scholar 

  35. L. Wan, E. Shamsaei, C.D. Easton, D. Yu, Y. Liang, X. Chen, Z. Abbasi, A. Akbari, X. Zhang, H. Wang, ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon 121, 330–336 (2017)

    Article  CAS  Google Scholar 

  36. C. Young, R.R. Salunkhe, J. Tang, C. Hu, M. Shahabuddin, E. Yanmaz, M.S.A. Hossain, J.H. Kim, Y. Yamauchi, Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 18(42), 29308–29315 (2016)

    Article  CAS  Google Scholar 

  37. L. Bai, X. Jiang, C. Wu, X. Gao, Y. Su, K. Ding, Z. Zhang, Nanoporous carbons prepared with ZIF-8 as a template and activation agent for supercapacitors. Mater. Lett. 223, 150–153 (2018)

    Article  CAS  Google Scholar 

  38. X. Lai, R. Guo, C. Cui, E. Ren, H. Xiao, Q. Qin, S. Jiang, Y. Zhang, Co-N-codoped carbon/Co@Carbon cloth hybrid derived from ZIF-67 for the oxygen evolution reaction and supercapacitors. Energy Fuels 34(10), 13023–13031 (2020)

    Article  CAS  Google Scholar 

  39. J. Wu, X. Zhang, F. Wei, Y. Sui, J. Qi, Controllable synthesis of ZIF-derived nano-hexahedron porous carbon for supercapacitor electrodes. Mater. Lett. 258, 126761 (2020)

    Article  CAS  Google Scholar 

  40. L. Wang, C. Wang, H. Wang, X. Jiao, Y. Ouyang, X. Xia, W. Lei, Q. Hao, ZIF-8 nanocrystals derived N-doped carbon decorated graphene sheets for symmetric supercapacitors. Electrochim. Acta 289, 494–502 (2018)

    Article  CAS  Google Scholar 

  41. W. Cai, R.K. Kankala, M. Xiao, N. Zhang, X. Zhang, Three-dimensional hollow N-doped ZIF-8-derived carbon@MnO2 composites for supercapacitors. Appl. Surf. Sci. 528, 146921 (2020)

    Article  CAS  Google Scholar 

  42. D. Zhang, J. Zhang, M. Pan, Y. Wang, T. Sun, Necklace-like C-ZIF-8@MWCNTs fabricated by electrochemical deposition towards enhanced supercapacitor. J. Alloy. Compd. 853, 157368 (2021)

    Article  CAS  Google Scholar 

  43. L. Yang, Y. Feng, D. Yu, J. Qiu, X. Zhang, D. Dong, J. Yao, Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors. J. Phys. Chem. Solids 125, 57–63 (2019)

    Article  CAS  Google Scholar 

  44. D. Zhang, T. Qin, S. Wu, X. Guo, C. Wang, Q. Xiang, Nafion-assisted electrophoretic deposition of ZIF-8 derivative N-doped porous carbon coating as high-performance supercapacitor electrode. Mater. Lett. 323, 132579 (2022)

    Article  CAS  Google Scholar 

  45. H. Gong, S. Bie, J. Zhang, X. Ke, X. Wang, J. Liang, N. Wu, Q. Zhang, C. Luo, Y. Jia, In situ construction of ZIF-67-derived hybrid tricobalt Tetraoxide@Carbon for supercapacitor. Nanomaterials (Basel) 12(9), 1571 (2022)

    Article  CAS  Google Scholar 

  46. C. Ma, Y. Mo, L. Liu, Y. Yu, A. Chen, ZIF-derived mesoporous carbon materials prepared by activation via Na2SiO3 for supercapacitor. Chin. Chem. Lett. 32(4), 1485–1490 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (51763014 and 52073133), Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (18LHPY002), and the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

JN and ZW: Conceptualization, Writing, Original draft preparation, and Validation; XY: Data collection, Methodology; and FR: Reviewing, Editing, and Supervision.

Corresponding author

Correspondence to Fen Ran.

Ethics declarations

Competing interests

The authors declare that there are no conflicts of interest or competing interests in this enclosed manuscript.

Research involving human or animal participants

There is no human tissue being used in the experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1254 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Wang, Z., Wang, X. et al. Zeolitic imidazolate frameworks derived carbon with rational porous structure mediated by polyvinylpyrrolidone applied as electrode materials for supercapacitors. J Mater Sci: Mater Electron 34, 721 (2023). https://doi.org/10.1007/s10854-023-09994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09994-4

Navigation