Skip to main content
Log in

Crystal growth, structural, spectral investigations, DFT calculations, thermal, photoluminescence, optical characteristics of a new organic material: piperidinium succinate (PS) single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using a slow evaporation approach, piperidinium succinate (PS) single crystals were successfully grown at room temperature. Single-Crystal X-Ray Diffraction (SCXRD) analysis was used to identify the cell dimensions of the as-grown PS single crystal and it was found that it correspond to a monoclinic crystal system with the space group P21/C, which matches the CDDC card number: 1979873 quite well. The functional groups contained in the molecule under consideration were identified via FT-IR analysis. The UV–visible spectrum was recorded to identify the identification of the optical transparency and band gap energy. The higher transparency of PS crystal is evident from the optical constants, including refractive index and extinction coefficient. Thermogravimetric (TG) and differential thermal analyses were studied together to evaluate the thermal properties (DTA). Photoluminescence (PL) spectral analysis had been used to examine the luminescence behaviour of PS crystal. Vicker’s hardness study was carried out to study the mechanical strength of the crystal. Mulliken charge analysis for obtained equilibrium geometry was used to calculate the atomic charge distributions in PS Crystals. Using density-functional theory (DFT) at the level of theory B3LYP/6-311 + G (d,p), the HOMO-LUMO energy gap was calculated. The HOMO–LUMO plot was used to determine the chemical hardness, electronegativity, and electrophilicity index. The Z-scan approach revealed the saturation absorption and self-defocusing effect. Calculations have been made to determine the magnitudes of third-order nonlinear susceptibility (10–4 esu), nonlinear absorption (10–3 m/W), and nonlinear refractive index (10–10 m2/W).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data will be available made on reasonable request. The data set of this paper is in Excel format, i.e. all the calculations are done in Excel and graphs are drawn in Origin software.

References

  1. S. Yari Kivshar, Nonlinear optics: the next decade. Opt. Express 16, 22126–22128 (2008). https://doi.org/10.1364/OE.16.022126

    Article  Google Scholar 

  2. C.C. Evans, M.B. Beucher, R. Masse, J.F. Nicoud, Nonlinearity enhancement by solid-state proton transfer: a new strategy for the design of nonlinear optical materials. Chem. Mater 10, 847–854 (1998). https://doi.org/10.1021/cm970618g

    Article  CAS  Google Scholar 

  3. J. Badan, R. Hierle, A. Perigaud, J. Zuss (eds.), Non-linear Optical Properties of Organic Molecules and Polymeric Materials, American Chemical Symposium Series 233 (American Chemical Society, Washington, 1993)

    Google Scholar 

  4. R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Organic single-crystal field-effect transistors. Phys. Stat. Sol. 201, 1302–1331 (2004). https://doi.org/10.1002/pssa.200404336

    Article  CAS  Google Scholar 

  5. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, Puschmann, OLEX2: Complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  6. A.L. Athishu, D. Rajaraman, G. Sundararajan, M. Suresh, P. Nethaji, R. Jaganathan, P. Kumaradhas, Synthesis, crystal structure, Hirshfeld surface analysis, DFT, molecular docking and molecular dynamic simulation studies of (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine derivatives. J. Mol Struct. 1266, 133483 (2022). https://doi.org/10.1016/j.molstruc.2022.133483

    Article  CAS  Google Scholar 

  7. A.M. Al-Majid, M. Haukka, S.M. Soliman, A.S. Alamary, S. Alshahrani, M. Ali, M.S. Islam, A. Barakat, X-ray crystal structure and Hirshfeld analysis of gem-aminals-based morpholine. Pyrolidine and Piperidine Moieties. Symmetry 13(1), 20 (2021). https://doi.org/10.3390/sym13010020

    Article  CAS  Google Scholar 

  8. A. Ramalingam, Synthesis and crystallization procedure of piperidin-4-one and its derivatives: an update. Chem. Rev. Lett. 4, 192–199 (2021). https://doi.org/10.22034/crl.2021.278234.1105

    Article  CAS  Google Scholar 

  9. B.K. Revathi, D. Reuben, S. Jonathan, G. Usha. Sathya, Crystal growth and characterization of new nonlinear optical piperidine derivative: (4-hydroxypiperidin-1-yl)(4-methylphenyl) methanone. J. Mol. Struc. 1154, 496–503 (2018). https://doi.org/10.1016/j.molstruc.2017.10.043

    Article  CAS  Google Scholar 

  10. A. Vijayakumar, K. Prathebha, A. Kala, Growth and characterization of a new piperidine derivative: 4-chloro-N-{[1-(4-chlorobenzoyl) piperidin-4-yl]methyl} benzamide hydrate (CPMBH). IJERT 5(15), 1–3 (2017)

    Google Scholar 

  11. G.M. Sheldrick, SHELXT – integrated space-group and crystal structure determination. Acta Cryst. A. 71, 3–8 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  12. A. Parkin, I.D.H. Oswald, S. Parsons, Structures of piperazine, piperidine and morpholine. Acta Crystallogr. B 60(2), 219–227 (2004). https://doi.org/10.1107/S0108768104003672

    Article  CAS  Google Scholar 

  13. H.J. Verweel, C.H. MacGillavry, The Crystal Structure of Succinic Acid COOH-CH2-CH2 – COOH. Zeitschrift fur Kristallographie Cryst. Mater. 102(1–6), 60–70 (2015). https://doi.org/10.1524/zkri.1940.102.1.60

    Article  Google Scholar 

  14. S. Refat Moamen, Lamia A. El-Zayat, Okan Zafer Yeşilel, Synthesis and spectroscopic characterization of piperidine/chloranil and piperidine/7, 7′, 8, 8′-tetracyanoquinodimethane charge transfer complexes: X-ray crystal structure of a 7, 7-dicyano-8, 8-di-piperidinoquinodimethane adduct. Polyhedron 27(2), 475–484 (2008). https://doi.org/10.1016/j.poly.2007.09.025

    Article  CAS  Google Scholar 

  15. M. Tahir Gulluoglu, Y. Erdogdu, S. Yurdakul, Molecular structure and vibrational spectra of piperidine and 4-methylpipedidine by density functional theory and ab initio Hartree-Fock calculations. J. Mol. Struc. 834, 540–547 (2007). https://doi.org/10.1016/j.molstruc.2007.01.023

    Article  CAS  Google Scholar 

  16. S. Krishnan, C. Justin Raj, R. Robert, A. Ramanand, S. Jerome Das, Growth and characterization of succinic acid single crystals. Cryst. Res. Technol. 42, 111087–1090 (2007). https://doi.org/10.1002/crat.200710981

    Article  CAS  Google Scholar 

  17. N.P. Rajesh, V. Jabha Ananthi, G. Vinitha, C.K. Jayasankar, Investigations on structural, optical and electrical properties of phenyl benzoate single crystal. Opt. Laser Technol. 104, 43–48 (2018). https://doi.org/10.1016/j.optlastec.2018.02.016

    Article  CAS  Google Scholar 

  18. J.C. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  19. R. Bhuvaneswari, M. Divya Bharathi, G. Anbalagan, K. Sakthi Murugesan, Investigation on the growth, spectral, thermal, laser and optical properties of glycinium 2-carboxy 6-nitrophthalate single crystal”. Opt. Mater. 84, 728–737 (2018). https://doi.org/10.1016/j.optmat.2018.08.018

    Article  CAS  Google Scholar 

  20. J.I. Pankove, Optical Processes in Semiconductors (Prentice Hall, New York, 1971)

    Google Scholar 

  21. P. Karuppasamy, S. MuthuSenthilPandian, P. Ramasamy, Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications.". Opt. Mater. 79, 152–171 (2018). https://doi.org/10.1016/j.optmat.2018.03.041

    Article  CAS  Google Scholar 

  22. G.A. Babu, R.P. Ramasamy, P. Ramasamy, Synthesis, crystal growth and characterization of an efficient nonlinear optical D–π–A type single crystal: 2-aminopyridinium 4-nitrophenolate 4-nitrophenol. Mater. Chem. Phys. 117, 326–330 (2009)

    Article  Google Scholar 

  23. K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru, S. Brahadeeswaran, Second- and third-order nonlinear optical and quantum chemical studies on 2-amino-4-picolinium-nitrophenolate-nitrophenol: a phase matchable organic single crystal. Opt. Mater. 49, 158–217 (2015). https://doi.org/10.1016/j.optmat.2015.09.014

    Article  CAS  Google Scholar 

  24. M. Nageshwari, C.R. Kumari, G. Vinitha, M.P. Mohamed, S. Sudha, M.L. Caroline, Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: l-Methionine-Succinic acid (2/1). J. Mol. Struct. 1155, 101–109 (2018). https://doi.org/10.1016/j.molstruc.2017.10.099

    Article  CAS  Google Scholar 

  25. M.P. Mohamed, P. Jayaprakash, M. Nageshwari, C.R. Kumari, P. Sangeetha, S. Sudha, G. Mani, M.L. Caroline, Crystal growth, structural, spectral, thermal, linear and nonlinear optical characterization of a new organic nonlinear chiral compound: L-tryptophan-fumaric acid-water (1/1/1) suitable for laser frequency conversion. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.04.002

    Article  Google Scholar 

  26. Y. Porter, O.K. Kang Min, N.S.P. Bhuvanesh, P. Shiv Halasyamani, Synthesis and characterization of Te2SeO7: a powder second-harmonic-generating study of TeO. Chem. Mater. 13, 1910–1915 (2001). https://doi.org/10.1021/cm001414u

    Article  CAS  Google Scholar 

  27. P. Jayaprakash, M. Peer Mohamed, P. Krishnan, M. Nageshwari, G. Mani, M.L. Caroline, Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: LPhenylalanine DL-Mandelic acid. Physica B 503, 25–31 (2016)

    Article  CAS  Google Scholar 

  28. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mat. Chem. Phys. 63, 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  29. K. Sangwal, B. Surowska, P. Blaziak, Relationship between indentation size effect and material properties in the microhardness measurement of some cobalt-based alloys. Mat. Chem. Phys. 80, 428–437 (2003). https://doi.org/10.1016/S0254-0584(02)00546-1

    Article  CAS  Google Scholar 

  30. M. Hanneman, Indentation size effect and microhardness study. Metall. Manch. 23, 135 (1941)

    Google Scholar 

  31. M. Nageshwari, P. Jayaprakash, C.R. Kumari, G. Vinitha, M.L. Caroline, Growth, spectral, linear and nonlinear optical characteristics of an efficient semi organic acentric crystal: L-valinium L-valine chloride. Physics B 511, 1–9 (2017). https://doi.org/10.1016/j.physb.2017.01.027

    Article  CAS  Google Scholar 

  32. W.A. Wooster, Physical properties and atomic arrangements in crystals”. Rep. Prog. Phys. 16, 62–82 (1953). https://doi.org/10.1088/0034-4885/16/1/302

    Article  Google Scholar 

  33. I. Sidir, Y.-G. Sidir, M. Kumalar, E. Tasal, Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule. J. Mol. Struc. 964, 134–151 (2010). https://doi.org/10.1016/j.molstruc.2009.11.023

    Article  CAS  Google Scholar 

  34. S. Thangarasu, V. Siva, S. Athimoolam, S. Asath Bahadur, Molecular structure, spectroscopic and quantum chemical studies on benzoic acid and succinic acid co-crystals of 2-aminopyrimidine. J. Theo. Comp. Chem. 17(04), 1850021 (2018). https://doi.org/10.1142/S0219633618500219

    Article  CAS  Google Scholar 

  35. M. Karabacak, E. Yilan, Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO and LUMO analysis of 4′-methylbiphenyl-2-carbonitrile. Spectrochim. Acta A 87, 273–285 (2012). https://doi.org/10.1016/j.saa.2011.11.051

    Article  CAS  Google Scholar 

  36. K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru, S. Brahadeeswaran, Second-and third-order nonlinear optical and quantum chemical studies on 2-amino-4-picolinium-nitrophenolate-nitrophenol: a phase matchable organic single crystal. Opt. Mater. 49, 158–170 (2015). https://doi.org/10.1016/j.optmat.2015.09.014

    Article  CAS  Google Scholar 

  37. M.A. Gomathi et al., An organic benzimidazolium benzilate (BDBA) crystal: Structural description, spectral investigations, DFT calculations, thermal, photoluminescence, linear and optical analysis. Chem. Nonlinear Phys. Lett. 776, 138705 (2021). https://doi.org/10.1016/j.cplett.2021.138705

    Article  CAS  Google Scholar 

  38. P.K. Chattaraj, U. Sarkar, D.R. Roy, Electronic Structure Principles and Aromaticity. Chem. Rev. 106, 2065–2091 (2006). https://doi.org/10.1021/cr040109f

    Article  CAS  Google Scholar 

  39. P. Pérez, L.R. Domingo, A. Aizman, R. Contreras, The electrophilicity index in organic chemistry. Theor. Asp. Chem. React. 19, 139–201 (2007). https://doi.org/10.1016/S1380-7323(07)80010-0

    Article  Google Scholar 

  40. P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystals. RSC Adv. 6, 109105–09123 (2016). https://doi.org/10.1039/C6RA21590D

    Article  CAS  Google Scholar 

  41. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron 26, 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  42. S.S. Zahraa, S.A. Raad, J.T. Khawla, Study of the Nonlinear OpticalProperties of Lithium Triborate Crystal by Using Z-Scan Technique. J. Sci. Res Int (2013). https://doi.org/10.21275/ART20161230

    Article  Google Scholar 

  43. M.T. Zhao, B.P. Singh, P.N. Prasad, A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers. J. Chem. Phys. 89, 5535–5541 (1998). https://doi.org/10.1063/1.455560

    Article  Google Scholar 

  44. M. Nageshwari, C.R. Kumari, G. Vinitha, M.P. Mohamed, S. Sudha, M.L. Caroline, Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: l-Methionine-Succinic acid (2/1). J. Mol. Struc. 1155, 101–109 (2018). https://doi.org/10.1016/j.molstruc.2017.10.099

    Article  CAS  Google Scholar 

  45. R.J. Mani, P. Selvarajan, H.A. Devadoss, D. Shanthi, Second-order, third-order NLO and other properties of l-alanine crystals admixtured with perchloric acid (LAPA). Optik 126(213), 218 (2014). https://doi.org/10.1016/j.ijleo.2014.08.143

    Article  CAS  Google Scholar 

  46. M. Dhavamurthy, R. Raja, K. Syed Suresh Babu, R. Mohan, Crystal structure, growth and characterizations of a novel organic third-order nonlinear optical crystal: guanidinium cinnamate. Appl. A Phys. (2016). https://doi.org/10.1007/s00339-016-0219-0

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BP contributed to conceptualization, methodology, and writing of the original draft. DRD contributed to software and data curation. RR contributed to reviewing & editing of the manuscript and project administration. NK contributed to conceptualization and reviewing & editing of the manuscript. TS contributed to supervision and validation.

Corresponding author

Correspondence to T. Sivanesan.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest.

Ethical approval

Not applicable.

Research involved in human and animal rights

This work does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, B., Renuka Devee, D., Ranjani, R. et al. Crystal growth, structural, spectral investigations, DFT calculations, thermal, photoluminescence, optical characteristics of a new organic material: piperidinium succinate (PS) single crystal. J Mater Sci: Mater Electron 34, 581 (2023). https://doi.org/10.1007/s10854-023-09850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09850-5

Navigation