Skip to main content
Log in

Investigation of interaction parameters of gamma radiation, neutron and charge particles in selected thermoplastic polymers for radiation protection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, interaction parameters of gamma-ray, neutron and charge particles in nine selected thermoplastic polymers with densities varied from 0.833 to 1.37 g.cm−3 were theoretically investigated for deployment in special radiation shielding applications. Phy-X/PSD, Py-MLBUF, and EPICOM (EPICS 2017 library) computer programs were deployed for the evaluation of gamma radiations interaction parameters in a wide selected energy range from 0.02 to 15 MeV while the range of H+, He++ ions were computed with SRIM Monte Carlo software at selected energies from 0.01 to 20 MeV, the total stopping power and range values for electrons interactions were deduced with ESTAR NIST program at selected electrons energies from 0.01 to 1000 MeV, the fast neutron removal cross-section (FNRCS) at 4.5 MeV was calculated with Phy-X/PSD software and Macroscopic effective removal cross-section (MRCS) was computed with MRCS software. Thermal and fast neutron removal coefficient were computed with NGCal software at 0.025 eV and 4 MeV. Gamma-ray transmission factor values were calculated for all samples for a range of well-known energies. From results obtained, PES displayed high shielding capability at lower gamma energies (less than 0.5 MeV). CSDA range of H+ and He++ ions increased with decrease in density of samples but increased with projectile energies. PES gave the highest stopping power at higher electron energies and lowest range at higher electron energies. The PEK gave the highest value of FNRCS (0.118 cm−1) and MRC (0.136 cm−1) while PES gave the lowest value of FNRCS (0.088 cm−1) and MRC (0.1012 cm−1). The computed average relative deviations of Phy-X/PSD program with respect to Py–MLBUF and EPICOM programs gave 0.098% and 1.411%, respectively. The study concluded that, composite of PES and PEK is recommended for use in special radiation protection installations and medical radiotherapy where flexibility and other thermochemical properties of these polymers will be of great advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig.18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E. Sakar, B. Alim, O.F. Ozpolat, B.C. Sakar, A. Baltakesmez, U. Akbaba, A surveying of photon and particle radiation interaction characteristics of some perovskite materials. Radia. Phys. Chem. 189, 109719 (2021). https://doi.org/10.1016/j.radphyschem.2021.109719

    Article  CAS  Google Scholar 

  2. C.V. More, H. Alavian, P.P. Pawar, Evaluation of gamma ray and neutron attenuation capability of thermoplastic polymers. Appl. Radiat. Isot. 176, 109884 (2021). https://doi.org/10.1016/j.apradiso.2021.109884

    Article  CAS  Google Scholar 

  3. V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum (2015). https://doi.org/10.1016/j.vacuum.2015.06.006

    Article  Google Scholar 

  4. M.G. El-Samrah, A.M. El-Mohandes, A.M. El-Khayatt, S.E. Chidiac, MRCsC: A user-friendly software for predicting shielding effectiveness against fast neutrons. Radiat. Phys. Chem. 182, 109356 (2021). https://doi.org/10.1016/j.radphyschem.2021.109356

    Article  CAS  Google Scholar 

  5. M.O. El- Ghossain, Calculations of stopping power and range of ions radiation (alpha particles) interaction with different materials and human body parts. Int. J. Phys. 5(3), 92–98 (2017). https://doi.org/10.12691/ijp-5-3-5

    Article  CAS  Google Scholar 

  6. B. Aygun, B. Alaylar, K. Turhan, E. Sakar, M. Karadayi, I. Abu Al-Sayyed, E. Pelit, M. Gulluce, A. Karabulut, Z. Turgut, B. Alim, Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 96, 1423–1434 (2020)

    Article  CAS  Google Scholar 

  7. Y.S. Rammah, O.F. Ozpolat, B. Alim, E. Sakar, R. El-Mallawany, F.I. El-Agawany, Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2020.109069

    Article  Google Scholar 

  8. E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, Investigation of kaolin - granite composite bricks for gamma radiation shielding. Int. J. Adv. Nucl. React. Des. Technol. 3, 194–199 (2021). https://doi.org/10.1016/j.jandt.2021.09.007

    Article  Google Scholar 

  9. C.V. More, H. Alavian, P.P. Pawara, Evaluation of gamma-ray attenuation characteristics of some thermoplastic polymers: experimental, WinXCom and MCNPX studies. J. Non-Cryst Solids 546, 120277 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120277

    Article  CAS  Google Scholar 

  10. C.V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review. Environ. Chem. Lett. (2021). https://doi.org/10.1007/s10311-021-01189-9

    Article  Google Scholar 

  11. R. Uh´lar, P. Alex, J. Piˇstor, A system of materials composition and geometry arrangement for fast neutron beam thermalization: an MCNP study. Nucl. Instrum. Method. Phys. Res. B 298, 81–85 (2013). https://doi.org/10.1016/j.nimb.2013.01.032

    Article  CAS  Google Scholar 

  12. P. Cassagnau, V. Bounor-Legar´e, F. Fenouillot, Reactive processing of thermoplastic polymers: a review of the fundamental aspects. Int. Polym. Process. 22, 218–258 (2007). https://doi.org/10.3139/217.2032

    Article  CAS  Google Scholar 

  13. M.I. Sayyed, H.C. Manjunatha, D.K. Gaikwad, S.S. Obaid, M.H.M. Zaid, K.A. Matori, Energy-absorption buildup factors and specific absorbed fractions of energy for bioactive glasses. Dig. J. Nanomater. Biostruct. 13, 701–712 (2018)

    Google Scholar 

  14. E.O. Echeweozo, D. Igwesi, Investigation of gamma shielding and liquid permeability properties of kaolin for liquid radioactive waste management. Appl. Radiat. Isot. 176, 109908 (2021). https://doi.org/10.1016/j.apradiso.2021.109908

    Article  CAS  Google Scholar 

  15. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding. Nucl. Eng. Technol. 48(5), 1230–1236 (2016)

    Article  Google Scholar 

  16. O. Agar, M. Sayyed, F. Akman, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 51(3), 853–859 (2019)

    Article  CAS  Google Scholar 

  17. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 1818–1826 (2010)

    Article  CAS  Google Scholar 

  18. L. Gerward, N. Guilbert, K. Bjorn Jensen, H. Levring, X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001)

    Article  CAS  Google Scholar 

  19. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—A program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)

    Article  CAS  Google Scholar 

  20. R. Nowotny, XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195. (1998)

  21. M.L. Taylor, R.L. Smith, F. Dossing, R.D. Franich, Robust calculation of effective atomic numbers: the Auto-Z(eff) software. Med. Phys. 39, 1769–1778 (2012)

    Article  CAS  Google Scholar 

  22. A. Un, T. Caner, The Direct-Z(eff) software for direct calculation of mass attenuation coefficient, effective atomic number and effective electron number. Ann. Nucl. Energy 65, 158–165 (2014)

    Article  CAS  Google Scholar 

  23. Z. Yalcin, O. Icelli, M. Okutan, R. Boncukcuoglu, O. Artun, S. Orak, A different perspective to the effective atomic number (Z(eff)) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM. Nucl. Instrum. Methods A 686, 43–47 (2012)

    Article  CAS  Google Scholar 

  24. O. Eyecioğlu, A. El-Khayatt, Y. Karabul, M. Çağlar, O. Toker, O. İçelli, BXCOM: a software for computation of radiation sensing. Radiat. Eff. Defects Solids 174, 506–518 (2019)

    Article  Google Scholar 

  25. J.F. Briesmeister, MCNP™ —A general Monte Carlo N-particle transport code; version 4c, LA-13709-M (Los Alamos National Laboratory (LANL), Los Alamos, NM, USA, 2000)

    Google Scholar 

  26. D.B. Pelowitz. MCNPX User’s Manual Version 2.6.0 (2008)

  27. V. Vlachoudis,. FLAIR: a powerful but user friendly graphical interface for FLUKA. In: Proc. Int. Conf. On Mathematics, Computational Methods & Reactor Physics (M&C 2009) (Saratoga Springs, New York. M.S. Mansy and W.M. Desoky (2009).

  28. F.C. Hila, A. Asuncion-Astronomo, A.M. Cheri, J.F. Dingle, M. Jecong, M.V. Abigaile, M.B. Javier-Hila, Z. Gili, C.V. Balderas, E. P. Girlie, N.R. Lopez, D. Guillermo, A.V. Amorsolo, EpiXS: a Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI8). Radiat Phys Chem 182, 109331 (2021)

    Article  CAS  Google Scholar 

  29. D.E. Cullen, A survey of photon cross section data for use in EPICS2017, IAEA-NDS-225, rev1. International Atomic Energy Agency. (2018).

  30. E. Şakar, O.F. Özpolatb, B. Alımc, M.I. Sayyedd, M. Kurudireka, Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  31. K.S. Mann, S.S. Mann, Py-MLBUF: development of an online-platform for gamma-ray shielding calculations and investigations. Ann. Nuclear Energy 150, 107845 (2020). https://doi.org/10.1016/j.anucene.2020.107845

    Article  CAS  Google Scholar 

  32. A. Stephan, A.H. Baeurle, A.G. Andrei, On the glassy state of multiphase and pure polymer materials. Polymer 47(17), 6243–6253 (2006). https://doi.org/10.1016/j.polymer.2006.05.076

    Article  CAS  Google Scholar 

  33. S.A.M. Issa, M.I. Sayyed, M. Kurudirek, Study of gamma radiation shielding properties of glasses. Bull. Mater. Sci. 40, 841–857 (2017)

    Article  CAS  Google Scholar 

  34. A. Alatawi, A.M. Alsharari, S.A.M. Issa, M. Rashad, A.A.A. Darwish, Y.B. Saddeek et al., Improvement of mechanical properties and radiation shielding performance of AlBiBO3 glasses using yttria: an experimental investigation. Ceram Int. 46, 3534e42 (2020)

    Article  Google Scholar 

  35. K. Siengsanoh, W. Hongtong, W. Chaiphaksa, P. Limkitjaroenporn, J. Kaewkhao, Physical, optical and gamma-ray shielding properties of BaO-La2O3-B2O3 and BaONa2O-B2O3 glass systems at 662 keV. J Phys: Conf. Ser. 1259, 1e8 (2019)

    Google Scholar 

  36. G. Lakshminarayana, A. Kumar, H.O. Tekin, S.A.M. Issa, M.S. Al-Buriahi, D.E. Lee, J. Yoon h, T. Park, Binary B2O3eBi2O3 glasses: scrutinization of directly and indirectly ionizing radiations shielding abilities. J. Mater. Res. Technol. 9(6), 14549-e14567 (2020)

    Article  CAS  Google Scholar 

  37. H.O. Tekin, S.A.M. Issa, E. Kavaz, E.E.A. Guclu, The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express 6, 115212 (2019)

    Article  Google Scholar 

  38. H. Akyildirim, E. Kavaz, F.I. El-Agawany, E. Yousef, Y.S. Rammah, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. J Non-Crystal Solids 545, 120245 (2020)

    Article  CAS  Google Scholar 

  39. R.S. Kaundal, S. Kaur, N. Singh, K.J. Singh, Investigation of structural properties of lead strontium borate glasses for gamma ray shielding applications. J. Phys. Chem. Solids 71, 1191–1195 (2011)

    Article  Google Scholar 

  40. M.Z. Gili, F.C. Hila, Characterization and radiation shielding properties of Philippine natural bentonite and zeolite. Phil. J. Sci. 150(6A), 1475–1488 (2021)

    Google Scholar 

  41. B. Alım, E. Sakar, A. Baltakesmez, I. Han, M. Sayyed, L.S. Demir, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiat. Phys. Chem. 166, 108455 (2020)

    Article  Google Scholar 

  42. A.H. Abdalsalam, E. Sakar, K.M. Kaky, M.H.A. Mhareb, B. Cevi˙z Sakar, M.I. Sayyed, A. Gurol, Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. 168, 108537 (2020)

    Article  CAS  Google Scholar 

  43. S.A. Issa, M. Rashad, T.A. Hanafy, Y.B. Saddeek, Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses. J. Non-Crystalline Solids 544, 120207 (2020)

    Article  CAS  Google Scholar 

  44. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloy. Compd. 727, 1227–1236 (2017)

    Article  CAS  Google Scholar 

  45. J.M. Akande, A.J. Agbalajobi, Analysis on some physical and chemical properties of Oreke dolomite deposit,". J. Minerals Mat. Charact. Eng 1(2), 33–38 (2013). https://doi.org/10.4236/jmmce.2013.12007

    Article  CAS  Google Scholar 

  46. O. Içelli, K.S. Mann, Z. Yalçın, S. Orak, V. Karakaya, Investigation of shielding properties of some boron compounds. Ann. Nucl. Energy 55, 341–350 (2013)

    Article  Google Scholar 

  47. D.R. Grimes, D.R. Warren, M. Partridge, An approximate analytical solution of the Bethe equation for charged particles in the radio therapeutic energy range. Sci. Rep. 7, 9781 (2017). https://doi.org/10.1038/s41598-017-10554-0

    Article  Google Scholar 

  48. M.O. El-Ghossain, Calculations of stopping power, and range of electrons interaction with different material and human body parts. Int. J. Sci. Technol. Res. 6(01), 114 (2017)

    Google Scholar 

  49. Y. Gaylan, A. Bozkurt, B. Avar, Investigating Thermal and fast neutron shielding properties of B4C-, B2O3-, Sm2O3-, and Gd2O3-doped polymer matrix composites using Monte Carlo simulations. Süleyman Demirel Üniv. Fen Edeb. Fak. Fen Derg. 16(2), 490–499 (2021). https://doi.org/10.29233/sdufeffd.933338

    Article  Google Scholar 

  50. T. Tuna, A.A. Eker, E. Kam, Neutron shielding characteristics of polymer composites with boron carbide”. J. Korean Phys. Soc. 78(7), 566–573 (2021). https://doi.org/10.1007/s40042-021-00089-z

    Article  CAS  Google Scholar 

  51. R. Adeli, S. Pezhman, S. Javad, Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay”. Radiat. Phys. Chem. 127, 140–146 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.026

    Article  CAS  Google Scholar 

  52. H.O. Tekin, G. ALMisned, Y.S. Rammah, E.M. Ahmed, F.T. Ali, D.S. Baykal, W. Elshami, H.M.H. Zakaly, S.A.M. Issa, G. Kilic, A. Ene, Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3. Optik. 267, 169643 (2022). https://doi.org/10.1016/j.ijleo.2022.169643

    Article  CAS  Google Scholar 

  53. Y.L. Thuyavan, N. Anantharaman, G. Arthanareeswaran, A.F. Ismail, R.V. Mangalaraja, Preparation and characterization of TiO2-sulfonated polymer embedded polyetherimide membranes for effective desalination application. Desalination 365, 355–364 (2015)

    Article  CAS  Google Scholar 

  54. Y. Kang, M. Obaid, J. Jang, M.H. Ham, I.S. Kim, Novel sulfonated graphene oxide Incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere 207, 581–589 (2018)

    Article  CAS  Google Scholar 

  55. W. Shi, Y.J. Ding, X. Mu, C. Fang, Q. Pan, Q. Gu, Guest–host polyetherketone polymer for applications in integrated-optical devices: characterization. J. Opt. Soc. Am. B 19, 215–221 (2002)

    Article  CAS  Google Scholar 

  56. J.F. Xiao, Y.A. Hu, H.D. Lu, Y.B. Cai, Z.Y.J. Chen, W. Fan, Effect of order of mixing on morphology and thermal properties of the compatibilized PBT and ABS alloys/OMT nanocomposites. J. Appl. Polym. Sci. 104, 2130–2139 (2007)

    Article  CAS  Google Scholar 

  57. M.B. El-Arnaouty, A.A. Ghaffar, V. Aboulfotouh, N.H. Taher, A.A. Taha, Radiation synthesis and characterization of poly (butyl methacrylate/acrylamide) copolymeric hydrogels and heparin controlled drug release. Polym. Bull. 72, 2739–2756 (2015)

    Article  CAS  Google Scholar 

  58. M. Liang, Y.J. Jhuang, C.F. Zhang, W.J. Tsai, H.C. Feng, H.C, Synthesis and characterization of poly (phenylene oxide) graft copolymers by atom transfer radical polymerizations. Eur. Polym. J. 45, 2348–2357 (2009)

    Article  CAS  Google Scholar 

  59. Q. He, T. Yuan, J. Zhu, Z. Luo, N. Haldolaarachchige, L. Sun, A. Khasanov, Y. Li, D.P. Young, S. Wei, Z. Guo, Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe-FeO core-shell nanoparticles. Polymer 53, 3642–3652 (2012)

    Article  CAS  Google Scholar 

  60. M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang. ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3). National Institute of Standards and Technology, Gaithersburg, MD. Retrieved on 05 Jun 2022 from http://physics.nist.gov/Star (2005)

  61. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018)

    Article  CAS  Google Scholar 

  62. H.S. Gökçe, O, Güngör H. Yılmaz, An online software to simulate the shielding properties of materials for neutrons and photons: NGCal. Radiat. Phys. Chem. 185, 109519 (2021). https://doi.org/10.1016/j.radphyschem.2021.109519

    Article  CAS  Google Scholar 

  63. E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, L.A. Nnanna, H.K. Idu, Assessment of granite-kaolin composite bricks as storage barrier facility for liquid radioactive waste. Radiat. Phys. Eng. 2(4), 29–37 (2021). https://doi.org/10.22034/RPE.2022.315654.1045

    Article  Google Scholar 

  64. N.A.M. Alsaif, Y. Elmahroug, B.M. Alotaibi, H.A. Alyousef, N. Rekik, A. Wahab, M.A. Hussein, R. Chand, U. Farooq, Calculating photon buildup factors in determining the g-ray shielding effectiveness of some materials susceptible to be used for the conception of neutrons and g-ray shielding. J. Mater. Res. Technol. 11, 769–784 (2021). https://doi.org/10.1016/j.jmrt.2021.01.052

    Article  CAS  Google Scholar 

  65. G.P. Singh, J. Singh, P. Kaur, S. Kaur, D. Arora, R. Kaur, K. Kaur, D.P. Singh, Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J. Mater. Res. Technol 9(6), 14425–14442 (2020). https://doi.org/10.1016/j.jmrt.2020.10.020

    Article  CAS  Google Scholar 

  66. M.S. Mansy, Y.F. Lasheen, M.M.E. Breky, Y. Selim, Experimental and theoretical investigation of Pb-Sb alloys as a gamma-radiation shielding material. Radiat. Phys. Chem. 183, 109416 (2021). https://doi.org/10.1016/j.radphyschem.2021.109416

    Article  CAS  Google Scholar 

  67. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instrum. Methods Phys. Res. B 266, 3906–3912 (2008). https://doi.org/10.1016/j.nimb.2008.06.034

    Article  CAS  Google Scholar 

  68. I. Akkurt, A.M. El-Khayatt, Effective atomic number and electron density of marble concrete. J. Radioanal. Nucl. Chem. 295, 633–638 (2013). https://doi.org/10.1007/s10967-012-2111-5

    Article  CAS  Google Scholar 

  69. O.I. Sallam, A.M. Madbouly, N.A. Elalaily, F.M. Ezz-Eldin, F.M., Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals. J. Alloy. Compd. 843, 156056 (2020)

    Article  CAS  Google Scholar 

  70. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997)

    Article  CAS  Google Scholar 

  71. M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2–TiO2–Li2B4O7 glass system. J. Alloy. Compd. 710, 312–322 (2017). https://doi.org/10.1016/j.jallcom.2017.03.192

    Article  CAS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AMA: Conceived the research idea and designed the calculations. Data curation and analysis—review & editing—Investigation, Methodology, Supervision, Validation, Visualization. Revised and edited the manuscript to be in its final form. EOE: Wrote the original manuscript; revised and edited the manuscript to be in the final form. Data curation and analysis. Two authors have read and approved the final manuscript.

Corresponding author

Correspondence to A. M. Abdelmonem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmonem, A.M., Echeweozo, E.O. Investigation of interaction parameters of gamma radiation, neutron and charge particles in selected thermoplastic polymers for radiation protection. J Mater Sci: Mater Electron 34, 365 (2023). https://doi.org/10.1007/s10854-022-09737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09737-x

Navigation