Skip to main content
Log in

Synthesis of daisy-like vanadium nitride powders with excellent microwave absorption properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The daisy-like vanadium nitride powders were synthesized via solvothermal combined with ammonia reduction nitridation method. The results of XRD and XPS showed that the sample was mainly cubic vanadium nitride phase and also contained abundant valence states of V element. Moreover, the residual oxygen element still existed in daisy-like vanadium nitride powders due to the inadequate reduction nitriding reaction, which is positive to generate abundant defects in the samples and is conducive to impedance matching. Meanwhile, the defect-rich samples favored the interfacial polarization effect. The daisy-like structure produced a large number of interfaces and pores, which promoted conductivity loss, interface polarization, multiple reflections, and scattering of electromagnetic waves. Hence, the daisy-like vanadium nitride powders exhibit distinguished reflection loss (RL) performance with RL values of − 56.7 dB (1.38 mm) and the optimal effective absorption bandwidth (EAB) of 4.13 GHz (1.6 mm). Furthermore, the EAB covers the entire X and Ku bands by adjusting the thickness (1.3–2.5 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban, J. Kong, Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces. (2020). https://doi.org/10.1002/admi.201901820

    Article  Google Scholar 

  2. B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, G. Ji, From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14(5), 1495–1501 (2020). https://doi.org/10.1007/s12274-020-3208-8

    Article  CAS  Google Scholar 

  3. J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, Z. Guo, Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Mater. Med. 108, 64–72 (2022). https://doi.org/10.1016/j.jmst.2021.08.049

    Article  Google Scholar 

  4. I. Abdalla, A. Elhassan, J. Yu, Z. Li, B. Ding, A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 157, 703–713 (2020). https://doi.org/10.1016/j.carbon.2019.11.004

    Article  CAS  Google Scholar 

  5. J. Zhou, X. Wang, K. Ge, Z. Yang, H. Li, C. Guo, J. Wang, Q. Shan, L. Xia, Core-shell structured nanocomposites formed by silicon coated carbon nanotubes with anti-oxidation and electromagnetic wave absorption. J. Coll. Interface Sci. 607(Pt 1), 881–889 (2022). https://doi.org/10.1016/j.jcis.2021.09.022

    Article  CAS  Google Scholar 

  6. T. Gao, H. Rong, K.H. Mahmoud, J. Ruan, S.M. El-Bahy, A.A. Faheim, Y. Li, M. Huang, M.A. Nassan, R. Zhao, Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5(2), 1158–1167 (2022). https://doi.org/10.1007/s42114-022-00507-1

    Article  CAS  Google Scholar 

  7. J. Guo, Z. Chen, X. Xu, X. Li, H. Liu, S. Xi, W. Abdul, Q. Wu, P. Zhang, B.B. Xu, J. Zhu, Z. Guo, Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5(3), 1769–1777 (2022). https://doi.org/10.1007/s42114-022-00417-2

    Article  CAS  Google Scholar 

  8. K. Peng, Y. Wu, C. Liu, A. Xiao, G. Xu, G. Fang, Y. Zhang, Y. Cao, Y. Zhang, Achievement of superior microwave absorption performance and ultra-wide regulation frequency range in Fe-Co-Nd via tuning the phase constitution and crystallinity. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166561

    Article  Google Scholar 

  9. P. Xu, J. Fang, H. He, X. Yue, In situ growth of globular MnO2 nanoflowers inside hierarchical porous mangosteen shells-derived carbon for efficient electromagnetic wave absorber. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.163826

    Article  Google Scholar 

  10. R. Tang, P. Xu, J. Dong, H. Gui, T. Zhang, Y. Ding, V. Murugadoss, N. Naik, D. Pan, M. Huang, Z. Guo, Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 188, 492–502 (2022). https://doi.org/10.1016/j.carbon.2021.12.026

    Article  CAS  Google Scholar 

  11. B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma, H.K. Thabet, S.M. El-Bahy, M.M. Ibrahim, M. Huang, I. Seok, G. Roymahapatra, N. Naik, B.B. Xu, J. Ding, T. Li, Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5(2), 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6

    Article  Google Scholar 

  12. R. Liu, N. Lun, Y.X. Qi, Y.J. Bai, H.L. Zhu, F.D. Han, X.L. Meng, J.Q. Bi, R.H. Fan, Microwave absorption properties of TiN nanoparticles. J. Alloys Compd. 509(41), 10032–10035 (2011). https://doi.org/10.1016/j.jallcom.2011.08.022

    Article  CAS  Google Scholar 

  13. B. Zhu, Y. Cui, D. Lv, K. Xu, Y. Chen, Y. Wei, H. Wei, J. Bu, Synthesis of setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.147439

    Article  Google Scholar 

  14. J. Kuang, T. Xiao, X. Hou, Q. Zheng, Q. Wang, P. Jiang, W. Cao, Microwave synthesis of worm-like SiC nanowires for thin electromagnetic wave absorbing materials. Ceram. Int. 45(9), 11660–11667 (2019). https://doi.org/10.1016/j.ceramint.2019.03.040

    Article  CAS  Google Scholar 

  15. Y. Cui, K. Xu, B. Zhu, S. Hu, Y. Chen, D. Lv, Y. Yu, J. Bu, H. Wei, B. Liang, Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164453

    Article  Google Scholar 

  16. P.J. Hanumantha, M.K. Datta, K. Kadakia, C. Okoli, P. Patel, P.N. Kumta, Vanadium nitride supercapacitors: Effect of Processing Parameters on electrochemical charge storage behavior. Electrochim. Acta. 207, 37–47 (2016). https://doi.org/10.1016/j.electacta.2016.04.058

    Article  CAS  Google Scholar 

  17. Z. Hou, K. Guo, H. Li, T. Zhai, Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors. CrystEngComm 18(17), 3040–3047 (2016). https://doi.org/10.1039/c6ce00333h

    Article  CAS  Google Scholar 

  18. X. Yuan, R. Wang, S. Huang, A. Sha, S. Guo, Vanadium nitride@carbon nanowires with inner porous structure for high-efficient microwave absorption. Mater. Sci. Eng. B. (2021). https://doi.org/10.1016/j.mseb.2021.115156

    Article  Google Scholar 

  19. X. Tong, B. Zhai, X. Gao, Multiple dielectric resonance behaviors and microwave attenuation in vanadium nitride/vanadium sesquioxide nanowires. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156393

    Article  Google Scholar 

  20. X. Yuan, R. Wang, W. Huang, L. Kong, S. Guo, L. Cheng, Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. ACS Appl. Mater. Interfaces. 12(11), 13208–13216 (2020). https://doi.org/10.1021/acsami.9b23310

    Article  CAS  Google Scholar 

  21. X. Yuan, R. Wang, W. Huang, Y. Liu, L. Zhang, L. Kong, S. Guo, Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122203

    Article  Google Scholar 

  22. R. Li, C. Li, F. Zhang, Y. Cui, D. Lv, Y. Chen, Y. Wei, H. Wei, J. Bu, Synthesis and microwave absorption properties of porous vanadium nitride microspheres. J. Mater. Sci. Mater. Electron. 33(21), 17306–17321 (2022). https://doi.org/10.1007/s10854-022-08608-9

    Article  CAS  Google Scholar 

  23. X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028

    Article  CAS  Google Scholar 

  24. W. Zhou, L. Long, P. Xiao, Y. Li, H. Luo, W.-D. Hu, R.-M. Yin, Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties. Ceram. Int. 43(7), 5628–5634 (2017). https://doi.org/10.1016/j.ceramint.2017.01.095

    Article  CAS  Google Scholar 

  25. J. Liu, Z. Zhao, L. Zhang, Toward the application of electromagnetic wave absorption by two-dimension materials. J. Mater. Sci. Mater. Electron. 32(21), 25562–25576 (2020). https://doi.org/10.1007/s10854-020-03800-1

    Article  CAS  Google Scholar 

  26. C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nanomicro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8

    Article  CAS  Google Scholar 

  27. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A. 3(19), 10345–10352 (2015). https://doi.org/10.1039/c5ta00086f

    Article  CAS  Google Scholar 

  28. X. Su, J. Ning, Y. Jia, Y. Liu, Flower-like MoS2 nanospheres: a promising material with good microwave absorption property in the frequency range of 8.2–12.4 GHz. NANO (2018). https://doi.org/10.1142/s1793292018500844

    Article  Google Scholar 

  29. Y. Li, J. Zhang, Z. Liu, M. Liu, H. Lin, R. Che, Morphology-dominant microwave absorption enhancement and electron tomography characterization of CoO self-assembly 3D nano-flowers. J. Mater. Chem. C. (2014). https://doi.org/10.1039/c4tc00739e

    Article  Google Scholar 

  30. B. Zhao, G. Shao, B. Fan, B. Sun, K. Guan, R. Zhang, Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method. J. Mater. Sci. Mater. Electron. 25(8), 3614–3621 (2014). https://doi.org/10.1007/s10854-014-2064-2

    Article  CAS  Google Scholar 

  31. Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, C. Zhang, L. Tang, J. Luo, B. Song, Z. Zhang, W. Lu, Q. Li, Y. Zhang, Y. Yao, Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17(4), 2719–2726 (2017). https://doi.org/10.1021/acs.nanolett.7b00854

    Article  CAS  Google Scholar 

  32. A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22(3), 914–921 (2009). https://doi.org/10.1021/cm901729x

    Article  CAS  Google Scholar 

  33. D. Zhang, J. Li, Z. Su, S. Hu, H. Li, Y. Yan, Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J. Adv. Ceram. 7(3), 246–255 (2018). https://doi.org/10.1007/s40145-018-0276-2

    Article  CAS  Google Scholar 

  34. S. Liu, X. Meng, Z. Wang, Z. Li, K. Yang, Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.126677

    Article  Google Scholar 

  35. X. Mao, Y. Bai, J. Yu, B. Ding, Insights into the flexibility of ZrMxOy (M = Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials. Dalton Trans. 45(15), 6660–6666 (2016). https://doi.org/10.1039/c6dt00319b

    Article  CAS  Google Scholar 

  36. S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8(34), 19011–19023 (2018). https://doi.org/10.1039/c8ra00913a

    Article  CAS  Google Scholar 

  37. H. Lin, B.W. Tao, Q. Li, Y.R. Li, Rapid preparation of V2O3 and VN nanocrystals by ammonolysis of the precursor VOC2O4·H2O. Adv. Mater. Res. 194–196, 660–664 (2011). https://doi.org/10.4028/www.scientific.net/AMR.194-196.660

    Article  CAS  Google Scholar 

  38. H. Li, P. He, Y. Wang, E. Hosono, H. Zhou, High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J. Mater. Chem. (2011). https://doi.org/10.1039/c1jm11523e

    Article  Google Scholar 

  39. S. Milošević, I. Stojković, S. Kurko, J.G. Novaković, N. Cvjetićanin, The simple one-step solvothermal synthesis of nanostructurated VO2(B). Ceram. Int. 38(3), 2313–2317 (2012). https://doi.org/10.1016/j.ceramint.2011.11.001

    Article  CAS  Google Scholar 

  40. A. Pan, H.B. Wu, L. Yu, T. Zhu, X.W. Lou, Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4(8), 3874–3879 (2012). https://doi.org/10.1021/am3012593

    Article  CAS  Google Scholar 

  41. N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. (2009). https://doi.org/10.1039/b819629j

    Article  Google Scholar 

  42. B. Zhao, B. Fan, Y. Xu, G. Shao, X. Wang, W. Zhao, R. Zhang, Preparation of honeycomb SnO(2) foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces. 7(47), 26217–26225 (2015). https://doi.org/10.1021/acsami.5b08383

    Article  CAS  Google Scholar 

  43. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 1(4), 765–777 (2013). https://doi.org/10.1039/c2tc00159d

    Article  CAS  Google Scholar 

  44. D. Zhao, Z. Cui, S. Wang, J. Qin, M. Cao, VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A. 4(20), 7914–7923 (2016). https://doi.org/10.1039/c6ta01707j

    Article  CAS  Google Scholar 

  45. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627

    Article  Google Scholar 

  46. W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054

    Article  CAS  Google Scholar 

  47. J.P. Chen, H. Jia, Z. Liu, Q.Q. Kong, Z.H. Hou, L.J. Xie, G.H. Sun, S.C. Zhang, C.M. Chen, Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon 164, 59–68 (2020). https://doi.org/10.1016/j.carbon.2020.03.049

    Article  CAS  Google Scholar 

  48. J. Zhou, B. Wei, Z. Yao, H. Lin, R. Tan, W. Chen, X. Guo, Preparation of hollow SiC spheres with biological template and research on its wave absorption properties. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153021

    Article  Google Scholar 

  49. Y. Wei, Y. Shi, X. Zhang, Z. Jiang, Y. Zhang, L. Zhang, J. Zhang, C. Gong, Electrospinning of lightweight TiN fibers with superior microwave absorption. J. Mater. Sci. Mater. Electron. 30(15), 14519–14527 (2019). https://doi.org/10.1007/s10854-019-01823-x

    Article  CAS  Google Scholar 

  50. S. Xie, Z. Ji, L. Zhu, J. Zhang, Y. Cao, J. Chen, R. Liu, J. Wang, Recent progress in electromagnetic wave absorption building materials. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jobe.2019.100963

    Article  Google Scholar 

  51. Z. Ren, W. Zhou, Y. Qing, S. Duan, H. Pan, Y. Zhou, Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler. Ceram. Int. 47(10), 14455–14463 (2021). https://doi.org/10.1016/j.ceramint.2021.02.024

    Article  CAS  Google Scholar 

  52. J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen, H. Raza, H. Wang, G. Zheng, D. Zhang, H. Zhang, Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics. 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017

    Article  Google Scholar 

  53. Y. Huo, K. Zhao, P. Miao, J. Kong, Z. Xu, K. Wang, F. Li, Y. Tang, Microwave absorption performance of SiC/ZrC/SiZrOC hybrid nanofibers with enhanced high-temperature oxidation resistance. ACS Sustain. Chem. Eng. 8(28), 10490–10501 (2020). https://doi.org/10.1021/acssuschemeng.0c02789

    Article  CAS  Google Scholar 

  54. Y. Wang, J. Yang, Z. Chen, Y. Hu, A new flexible and ultralight carbon foam/Ti3C2T X MXene hybrid for high-performance electromagnetic wave absorption. RSC Adv. 9(70), 41038–41049 (2019). https://doi.org/10.1039/c9ra09817h

    Article  CAS  Google Scholar 

  55. Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi, J. Cao, G. Ji, Y. Du, Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019). https://doi.org/10.1016/j.cej.2019.04.174

    Article  CAS  Google Scholar 

  56. C. Liu, S. Liu, L. Wang, Z. Bai, Y. Huang, X. Liu, In situ fabrication of flower-like metallopolymeric superstructure on Nd2Fe14B template for enhanced microwave absorption. J. Phys. Chem. Solids. (2021). https://doi.org/10.1016/j.jpcs.2020.109755

    Article  Google Scholar 

  57. M. Qin, D. Lan, G. Wu, X. Qiao, H. Wu, Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144480

    Article  Google Scholar 

  58. M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics. 5(4), 503–541 (2019). https://doi.org/10.1016/j.jmat.2019.07.003

    Article  Google Scholar 

  59. H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu, Y. Xie, 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128087

    Article  Google Scholar 

  60. Z. Shen, J. Chen, B. Li, G. Li, Z. Zhang, X. Hou, Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152388

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Numbers 51472072) and the Hebei Natural Science Foundation (Grant Numbers E2021209120 and E2022209067).

Funding

The work was supported by the National Natural Science Foundation of China (Grant Numbers 51472072) and the Hebei Natural Science Foundation (Grant Numbers E2021209120 and E2022209067).

Author information

Authors and Affiliations

Authors

Contributions

RL participated in the conceptualization, synthesis, performance testing, and writing of the original draft. FZ participated in the synthesis, performance testing, and writing, reviewing, and editing of the manuscript. CL participated in the investigation, methodology, and synthesis. JW participated in the investigation, methodology, and synthesis. YC participated in the idea and design of this research, writing of the original draft & writing, reviewing, & editing of the manuscript, investigation, synthesis, and performance testing. DL participated in the formal analysis and performance testing. YC participated in the methodology and performance testing. YW participated in the resources and formal analysis. HW participated in the investigation, synthesis, and performance testing. JB participated in the resources and formal analysis.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhang, F., Li, C. et al. Synthesis of daisy-like vanadium nitride powders with excellent microwave absorption properties. J Mater Sci: Mater Electron 34, 293 (2023). https://doi.org/10.1007/s10854-022-09727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09727-z

Navigation