Skip to main content
Log in

Propane gas-sensing properties of pure and Pd-doped tin oxide nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and palladium-doped tin oxide nanopowders were synthesized by wet chemical synthesis with Tin (IV) chloride pentahydrate and palladium (II) chloride as a precursor and dopant source, respectively. Effect of palladium (Pd) concentration on the structural, morphological, and propane gas-sensing properties were studied in detail. X-ray diffraction analysis confirms the tetragonal rutile phase structure with (110) as the preferential orientation of SnO2. Also, the presence of Pd and PdO phases was observed confirming the formation of dopant clusters on the surface. The dopant incorporation into the SnO2 lattice was also observed by Raman analysis with a right shift in the vibrational mode. Scanning Electron Microscopy (SEM) studies show the formation of both large and small grains with irregular shapes and nanometric crystallites. High-resolution Transmission electron microscopy (HRTEM) confirms the tetragonal shape of the particles and the undulations observed due to dopant incorporation and the formation of surface dopant clusters. Gas-sensing responses of all SnO2 powder were obtained for propane gas, at different gas concentrations and operating temperatures. The highest sensing response was obtained for SnO2 powder deposited at 4 wt%. By utilizing a simple chemical synthesis and pellet manufacturing, a high surface area-doped nanostructures were obtained, which show the highest propane-sensing response. Finally, in this work, a complete and systematic structural and morphological analysis of all samples were performed and the effect of Pd doping wt% on the propane gas sensing of SnO2 structures was clearly explained utilizing a schematic sensing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

I declare that all data used in this work are available. The datasets generated and/or analyzed during the current study are not publicly available due [have not been published] but will be available from the data repository when the main manuscript will be published.

References

  1. T. Ikeda, K. Sato, Y. Hayashi, Y. Wakayama, K. Adachi, H. Nishimura, Sol. Energy Mater Sol Cells 34, 379 (1994). https://doi.org/10.1557/PROC-1101-KK02-01

    Article  CAS  Google Scholar 

  2. T. Waitz, B. Beckera, T. Wagnera, T. Sauerwald, C.D. Kohlb, M. Tiemann, Sensor Actuators B Chem. 150, 788 (2010). https://doi.org/10.1016/j.snb.2010.08.001

    Article  CAS  Google Scholar 

  3. D. Mohanta, K. Barman, S.J.M. Ahmaruzzaman, J. Colloid Interfaces Sci. 505, 756 (2017). https://doi.org/10.1016/j.jcis.2017.06.064

    Article  CAS  Google Scholar 

  4. P. Ravikumar, K. Ravichandran, B. Sakthivel, J. Mater. Sci. Technol. 28, 999 (2012). https://doi.org/10.1016/S1005-0302(12)60164-9

    Article  CAS  Google Scholar 

  5. Q. Wang, X. Li, W.-M. Zhao, S. Jin, Appl. Surf. Sci. 492, 374 (2019). https://doi.org/10.1016/j.apsusc.2019.06.168

    Article  CAS  Google Scholar 

  6. R.V. Vijayalakshmi, R. Kuppan, P.P. Kumar, J. Mol. Liq. 307, 112951 (2020). https://doi.org/10.1016/j.molliq.2020.112951

    Article  CAS  Google Scholar 

  7. M.W. Holdgate, A Perspective of Environmental Pollution (Cambridge University Press, New York, 1979). https://doi.org/10.1177/004711788000600518

    Book  Google Scholar 

  8. M. Tucker, Ecol. Econ. 15(3), 215 (1995). https://doi.org/10.1016/0921-8009(95)00045-3

    Article  Google Scholar 

  9. C.A. McLinden, V. Fioletov, M.W. Shephard, N. Krotkov, C. Li, R.V. Martin, M.D. Moran, J. Joiner, Nat. Geosci. 9, 496 (2016). https://doi.org/10.1038/ngeo2724

    Article  CAS  Google Scholar 

  10. J.L. Peel, R. Haeuber, V. Garcia, A.G. Russell, L. Neas, Biogeochemistry 114, 121 (2013). https://doi.org/10.1007/s10533-012-9782-4

    Article  CAS  Google Scholar 

  11. H. Sugie, C. Sasaki, C. Hashimoto, H. Takeshita, T. Nagai, S. Nakamura, M. Furukawa, T. Nishikawa, K. Kurihara, Forensic Sci. Int. 143, 211 (2004). https://doi.org/10.1016/j.forsciint.2004.02.038

    Article  CAS  Google Scholar 

  12. J.M. Bautista, A. Maldonado, M.L. Olvera, Gas sensing performance of TiO2–Al2O3 pellets, in 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (2015). https://doi.org/10.1109/ICEEE.2015.7357971

  13. H.G. Bonilla, M.F. Martínez, V.M.R. Betancourtt, A.G. Bonilla, J.R. Gómez, L.G. Ortiz, M.L. Olvera, J.S. Salazar, Sensors 16, 177 (2016). https://doi.org/10.3390/s16020177

    Article  CAS  Google Scholar 

  14. R.S. Aashis, A.R. Koppalkar, M. Sasikala, T. Machappa, P.M.V.N. Ambika, Sens. Lett. 9, 1342 (2011). https://doi.org/10.1166/sl.2011.1679

    Article  Google Scholar 

  15. A. Maldonado, S.A. Mallen-Hernandez, J. Vega-Perez, M.L. Olvera, Rev. Mex. Fis. 55(1), 90 (2009)

    CAS  Google Scholar 

  16. C. Sankar, V. Ponnuswamy, M. Manickam, R. Mariappan, R. Suresh, Appl. Surf. Sci. 349, 931 (2015). https://doi.org/10.1016/j.apsusc.2015.04.198

    Article  CAS  Google Scholar 

  17. X. Zhao, B. Cai, Q. Tang, Y. Tong, Y. Liu, Sensors 14, 13999 (2014). https://doi.org/10.3390/s140813999

    Article  CAS  Google Scholar 

  18. W. Liu, X. Cao, Y. Zhu, L. Cao, Sensors Actuators B Chem. 66, 219 (2000). https://doi.org/10.1016/S0925-4005(00)00347-6

    Article  CAS  Google Scholar 

  19. J. Kaur, R. Kumar, M.C. Bhatnagar, Sensors Actuators B Chem. 126, 478 (2007). https://doi.org/10.1016/j.snb.2007.03.033

    Article  CAS  Google Scholar 

  20. D. Liting, L. Haiying, L. Shuo, L. Liu, L. Yu, X. Suyan, G. Yimin, C. Yali, Z. Xiangan, L. Qingcheng, Chem. Phys. Lett. 713, 235 (2018). https://doi.org/10.1016/j.cplett.2018.10.052

    Article  CAS  Google Scholar 

  21. A.I. Khudiar, A.M. Oufi, Sensor Actuators B Chem. 340, 129633 (2021). https://doi.org/10.1016/j.snb.2021.129633

    Article  CAS  Google Scholar 

  22. B. Gautheron, M. Labeau, G. Delabouglise, U. Schmatz, Sensor Actuators B Chem 16, 357 (1993). https://doi.org/10.1016/0925-4005(93)85210-2

    Article  CAS  Google Scholar 

  23. W. Zeng, T. Liua, D. Liu, E. Han, Sensors Actuators B 160, 455 (2011). https://doi.org/10.1016/j.snb.2011.08.008

    Article  CAS  Google Scholar 

  24. N.L. Moghadam, E.B.A. Karimabad, S.M. Niasari, H. Safardoust, J. Nanomater. 5, 47 (2015)

    Google Scholar 

  25. M.I. Amer, S.H. Moustafa, M. El-Hagary, Mater. Chem. Phys. 248, 122892 (2020). https://doi.org/10.1016/j.matchemphys.2020.122892

    Article  CAS  Google Scholar 

  26. A.D. Bhagwat, S.S. Sawant, B.G. Ankamwar, C.M. Mahajan, J. Nano Electron. Phys. 7, 04037 (2015)

    Google Scholar 

  27. L.A. Patil, M.D. Shinde, A.R. Bari, V.V. Deo, Sensors Actuators B Chem. 143, 270 (2009). https://doi.org/10.1016/j.snb.2009.09.048

    Article  CAS  Google Scholar 

  28. R. Herrera-Rivera, M.L. Olvera, A. Maldonado, J. Nanomater. 1, 9 (2017). https://doi.org/10.1155/2017/4595384

    Article  CAS  Google Scholar 

  29. D. Soumen, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  30. S. Sagadevan, J. Podder, Soft Nanosci. Lett. 5, 64 (2015). https://doi.org/10.4236/snl.2015.54007

    Article  CAS  Google Scholar 

  31. E.M. El-Maghraby, A. Qurashi, T. Yamazaki, Ceram. Int. 39, 8475 (2013). https://doi.org/10.1016/j.ceramint.2013.01.112

    Article  CAS  Google Scholar 

  32. I.M.E. Radaf, T.A. Hameed, G.M.E. Komy, T.M. Dahy, Ceram. Int. 45, 3072 (2019). https://doi.org/10.1016/j.ceramint.2018.10.189

    Article  CAS  Google Scholar 

  33. J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi, Solid State Sci. 11, 1602 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.014

    Article  CAS  Google Scholar 

  34. J.K. Srivastava, D.K. Verma, R.M.L. Awadh, Int. J. Sci. Res. Dev. 9, 2321 (2021)

    Google Scholar 

  35. A.R. Phani, Appl. Phys. Lett. 71, 2358 (1997). https://doi.org/10.1063/1.120557

    Article  CAS  Google Scholar 

  36. K.K. Tangirala-Venkata, M.L. Olvera, A. Maldonado, R.R. Biswal, H. Gómez-Pozos, Sensors 20(23), 6879 (2020). https://doi.org/10.3390/s20236879

    Article  CAS  Google Scholar 

  37. J. Haines, J.M. Léger, Phys. Rev. B. 55, 11144 (1997). https://doi.org/10.1103/PhysRevB.55.11144

    Article  CAS  Google Scholar 

  38. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn (Prentice Hall, Upper Saddle River, 2001)

  39. F.T. Leitão Muniz, M.A. Ribeiro Miranda, C.M. dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A 72, 1–6 (2016). https://doi.org/10.1107/S205327331600365X

    Article  CAS  Google Scholar 

  40. G.B. Harris, Quantitative measurement of preferred orientation rolled uranium bars. Philos. Mag. 43, 113–123 (1952). https://doi.org/10.1080/14786440108520972

    Article  Google Scholar 

  41. N. Sergent, M. Epifani, E. Comini, G. Faglia, T. Pagnier, Sensor Actuators B Chem. 126, 1 (2007). https://doi.org/10.1016/j.snb.2006.10.013

    Article  CAS  Google Scholar 

  42. M.I. Ivanovskaya, P.A. Bogdanov, D.R. Orlik, ACh. Gurlo, V.V. Romanovskaya, Thin Solid Films 296(1–2), 41–43 (1997). https://doi.org/10.1016/S0040-6090(96)09354-6

    Article  CAS  Google Scholar 

  43. A. Ayeshamariam, S. Ramalingam, M. Bououdina, M. Jayachandran, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 1135–1143 (2014). https://doi.org/10.1016/j.saa.2013.09

    Article  CAS  Google Scholar 

  44. Y. Liu, Y. Xu, Y. Yan, D. Hu, L. Yang, R. Shen, Starch/Stärke 67, 612–619 (2015). https://doi.org/10.1002/star.201400246

    Article  CAS  Google Scholar 

  45. H.F. Franzen, Second-Order Phase Transitions and the Irreducible Representation of Space Groups. Lecture Notes in Chemistry, vol. 32 (Springer, Berlin, Heidelberg, 1982). https://doi.org/10.1007/978-3-642-48947-1_1

  46. H. Gómez-Pozos, A. Maldonado, M.L. Olvera, Mater. Lett. 61, 1460 (2007). https://doi.org/10.1016/j.matlet.2006.07.053

    Article  CAS  Google Scholar 

  47. G. Oster, Y. Nishijima, Moiré patterns. Sci. Am. 208, 54 (1963)

    Article  Google Scholar 

  48. W. Yan, X. Zeng, G. Wu, W. Jiang, D. Wei, M. Ling, H. Zhou, C. Guo, J. Mater. Sci. Mater. Electron. 31, 14165 (2020). https://doi.org/10.1007/s10854-020-03971-x

    Article  CAS  Google Scholar 

  49. M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices (Academic Press, London, 1989)

    Google Scholar 

  50. X. Zhou, A. Wang, Y. Wang, L. Bian, Z. Yang, Y. Bian, Y. Gong, X. Wu, N. Han, Y. Chen, ACS Sensors 3(11), 2385 (2018). https://doi.org/10.1021/acssensors.8b00792

    Article  CAS  Google Scholar 

  51. M. Che, A.J. Tench, Adv. Catal. 31, 77–133 (1982)

    CAS  Google Scholar 

  52. S.C.J. Chang, Vac. Sci. Technol. 17, 366–369 (1980). https://doi.org/10.1116/1.570389

    Article  CAS  Google Scholar 

  53. M.W.J. Prins, K.-O. Grosse-Holz, J.F.M. Cillessen, L.F. Feiner, J. Appl. Phys. 83(2), 888–893 (1998). https://doi.org/10.1063/1.366773

    Article  CAS  Google Scholar 

  54. Q.H. Wu, J. Li, S.G. Sun, Curr. Nanosci. 6, 525–538 (2010). https://doi.org/10.2174/157341310797574934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to A.G. López-Fabián and M.A. Luna-Arias for the technical help rendered.

Funding

This work was supported byA. Maldonado credits CONACyT for support through 166601 Project and programa de desarrollo al profesorado, PROMEP.

Author information

Authors and Affiliations

Authors

Contributions

HG performed writing, TVKK and AGH interpretation of results and MLO and AM review and editing.

Corresponding author

Correspondence to Heberto Gómez-Pozos.

Ethics declarations

Competing interests

Heberto Gomez Pozos, corresponding author of the work entitled “Propane gas sensing properties of pure and Pd doped tin oxide nanostructures” declare that there are no conflicts of interest on behalf of all the authors. The authors inform that no exist interests that are directly or indirectly related to the work submitted for publication within the last 3 years of beginning the work.

Ethical approval

There is no financial relationship with other people or organizations that could inappropriately influence this research work. I informed you that neither human nor animals were involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, T.V.K., Olvera-Amador, M.L., Maldonado, A. et al. Propane gas-sensing properties of pure and Pd-doped tin oxide nanostructures. J Mater Sci: Mater Electron 34, 228 (2023). https://doi.org/10.1007/s10854-022-09636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09636-1

Navigation