Skip to main content
Log in

Fabrication and microwave absorption properties of the flaky carbonyl iron/graphene oxide composite in S-band

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the microwave absorption properties of the flaky carbonyl iron/graphene oxide/calcium stearate (FCI/GO/CS) composite were studied. The microstructures were detected by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR), whereas and the electromagnetic parameters were measured by Agilent vector network analyzer (VNA) in the frequency range of 1–18 GHz. According to the transmission line theory, the ball milling sample, with 2 wt% calcium stearate (CS) and 2 wt% GO to flaky CIP, has a minimum reflection loss peak of – 11.2 dB with the bandwidth (≤ – 10 dB) is 0.7 GHz at the thickness of 2 mm. After 2 wt% CS is added, the impedance matching (Zr) curve of FCI/GO is closer to 1. Therefore, the FCI/GO/CS composites can get better impedance matching properties. It is noted that the excellent electromagnetic wave absorption properties for FCI/GO/CS composites can be applied in S band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. T. Yamane et al., Development of wide-band ferrite fin electromagnetic wave absorber panel for building wall, in IEEE International Symposium on Electromagnetic Compatibility, vol. 2 (IEEE, 2002), pp. 799–804

  2. H. Wu, L.D. Wang, H.L. Wu, Synthesis.: characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix. Appl. Surf. Sci. 290, 388–397 (2014)

    Article  CAS  Google Scholar 

  3. B. Zhao, G. Shao, B.B. Fan, C.Y. Wang, Y.J. Xie, R. Zhang, Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn6O4(OH)4 nanoshells. Powder Technol. 270, 20–26 (2015)

    Article  CAS  Google Scholar 

  4. Y. Liu, F. Luo, J.B. Su, W.C. Zhou, D.M. Zhu, Z.M. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloy Compd. 619, 854–860 (2015)

    Article  CAS  Google Scholar 

  5. Y. Xu, J.H. Luo, W. Yao, J.G. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/polyaniline composites and their enhanced microwave absorption properties. J. Alloy Compd. 636, 310–316 (2015)

    Article  CAS  Google Scholar 

  6. Z.Q. Yan, J. Cai, Y.G. Xu, D.Y. Zhang, Microwave absorption property of the diatomite coated by Fe–CoNiP films. Appl. Surf. Sci. 346, 77–83 (2015)

    Article  CAS  Google Scholar 

  7. Y.Y. Zhou, W.C. Zhou, L. Rong, Y. Mu, Y.C. Qing, Enhanced antioxidation and electromagnetic properties of co-coated flaky carbonyl iron particles prepared by electroless plating. J. Alloys Compd. 637, 10–15 (2015)

    Article  CAS  Google Scholar 

  8. H.Y. Wang, D.M. Zhu, W.C. Zhou, F. Luo, Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials. J. Magn. Magn. Mater. 375, 111–116 (2015)

    Article  CAS  Google Scholar 

  9. F.S. Wen et al., Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Phys. B Condens. Matter 20, 3567–3570 (2009)

    Article  Google Scholar 

  10. Y.B. Zhu et al., Microwave absorbing properties of SiO2 coated carbonyl iron particles. Mater. Rev. 2, 9–11 (2010)

    Google Scholar 

  11. W.Y. Dai, Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance. J. Alloys Compd. 812, 152083 (2019)

    Article  Google Scholar 

  12. Y.M. Huangfu, K.P. Ruan, H. Qiu, Y.J. Lu, C.B. Liang, J. Kong et al., Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites Part. A Appl. Sci. 121, 265–272 (2019)

    Article  CAS  Google Scholar 

  13. J. Liu, Y.P. Duan, L.L. Song, X.F. Zhang, Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption. Org. Electron. 63, 175–183 (2018)

    Article  CAS  Google Scholar 

  14. C.B. Liang, H. Qiu, Y.Y. Han, H.B. Gu, P. Song, L. Wang, Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7, 2725–2733 (2019)

    Article  CAS  Google Scholar 

  15. X.M. Sun, H. Sun, H.P. Li, H.S. Peng, Developing polymer composite materials: carbon nanotubes or graphene? Adv. Mater. 25, 5153–5176 (2013)

    Article  CAS  Google Scholar 

  16. M. Yu, Y.X. Ma, J.H. Liu, S.M. Li, Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 87, 98–105 (2015)

    Article  CAS  Google Scholar 

  17. M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang et al., Electromagnetic response and energy conversion for functions and devices in low dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)

    Article  Google Scholar 

  18. Y.Q. Han, Y. Lu, Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Compos. Sci. Technol. 69, 1231–1237 (2009)

    Article  CAS  Google Scholar 

  19. Q.L. Lin, R.G. Zheng, P.H. Tian, Preparation and characterization of BMI resin/graphite oxide nanocomposites. Polym. Test. 29, 537–543 (2010)

    Article  CAS  Google Scholar 

  20. Y. Liu, Z.M. Chen, G.S. Yang, Synthesis and characterization of polyamide-6/graphite oxide nanocomposites. J. Mater. Sci. 46, 882–888 (2011)

    Article  CAS  Google Scholar 

  21. D.L. Han, L.F. Yan, W.F. Chen, W. Li, P.R. Bangal, Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr. Polym. 83, 966–972 (2011)

    Article  CAS  Google Scholar 

  22. Y.R. Lee, S.C. Kim, Y. Lee, H.M. Jeong, A. Raghu, V.R. Reddy, B.K. Kim, Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011)

    Article  CAS  Google Scholar 

  23. T. Wang, Y. Li, S. Geng et al., Preparation of flexible reduced graphene oxide/poly(vinylalcohol) film with superior microwave absorption properties. J. Rsc Adv. 5, 88958–88964 (2015)

    Article  CAS  Google Scholar 

  24. V.K. Singh, M.K. Patra, M. Manoth et al., In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Mater. 24, 147–152 (2009)

    Article  CAS  Google Scholar 

  25. S. Stankovich, D.A. Dikin, G.H.B. Dommett et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  26. Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016)

    Article  CAS  Google Scholar 

  27. X.T. Chen, D. Zhang, H.Y. Chen, R.Y. Hong, Preparation and characterization of CIP@Fe3O4@PANI composites. Colloids Surf. A Physicochem. Eng. Aspects 628, 127410 (2021)

    Article  CAS  Google Scholar 

  28. J.B. Guo, Y.P. Duan, L.D. Liu, L.Y. Chen, S.H. Liu, Electromagnetic and microwave absorption properties of carbonyl-iron/Fe91Si9 composites in gigahertz range. J. Electromagn. Anal. Appl. 3, 140–146 (2011)

    CAS  Google Scholar 

  29. Y. Liu, X.X. Liu, R. Li, W. Wen, J. Xuan, Design and fabrication of Carbon fiber/carbonyl iron core-shell structure composites as high performance microwave absorbers. RSC Adv. 5, 8713–8720 (2015)

    Article  Google Scholar 

  30. P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J.W. Chen, R.Q. Xu, J. Chen, Fabrication and microwave absorption properties of the flaky carbonyl iron/FeSiAl composite in S-band. J. Mater. Sci. Mater. Electron. 29, 4711–4716 (2018)

    CAS  Google Scholar 

  31. J. Pourahmadazar, V. Rafii, Broadband circularly polarized slot antenna array for Land S-band applications. Electron. Lett. 48, 542–543 (2012)

    Article  Google Scholar 

  32. C. Wang, R. Lv, Z. Huang, F. Kang, J. Gu, Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J. Alloys Compd. 509, 494–498 (2011)

    Article  CAS  Google Scholar 

  33. B.S. Zhang, Y. Feng, J. Xiong, Y. Yang, H. Lu, Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2–18 GHz. IEEE Trans. Magn. 42, 1778–1781 (2006)

    Article  CAS  Google Scholar 

  34. Y.C. Qin, D.D. Min, Y.Y. Zhou, F. Luo, W.C. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)

    Article  Google Scholar 

  35. C.C. Chen, W.F. Liang, Y.H. Nien, H.K. Liu, R.B. Yang, Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Mater. Res. Bull. 96, 81–85 (2017)

    Article  CAS  Google Scholar 

  36. Y. Xu, J.H. Luo, W. Yao, J.G. Xu, T. Li, Preparation of reduced graphene oxide/flake carbonyl iron powders/ polyaniline composites and their enhanced microwave absorption properties. J. Alloys Compd. 636, 310–316 (2015)

    Article  CAS  Google Scholar 

  37. J. Sun, H. Xu, Y. Shen et al., Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloys Compd. 548, 18–22 (2013)

    Article  CAS  Google Scholar 

  38. K. Liang, X.J. Qiao, Z.G. Sun, X.D. Guo, L. Wei, Y. Qu, Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123, 445 (2017)

    Article  Google Scholar 

  39. J. Xu, I. Stangel, An FT-Raman spectroscopic investigation of dentin and collagen surfaces modified by 2-hydroxyethylmethacrylate. J. Dent. Res. 76, 596–601 (1997)

    Article  CAS  Google Scholar 

  40. K.N. Gusak, N.G. Kozlov, Reaction of benzylidene-2-naphthylamine with the ethyl ester of 3-pyridyl-β-oxopropionic acid. Chem Heterocycl Compd. 32, 696–698 (1996)

  41. C. Fanggao, G.A. Saunders, Temperature and frequency dependencies of the complex dielectric constant of poly (ethy1ene oxide) under hydrostatic pressure. J. Polym. Sci. Part B Polym. Phys 34, 425–433 (1996)

    Article  CAS  Google Scholar 

  42. N. Ortega, A. Kumar, R. Katiyar, C. Rinaldi, Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009)

    Article  CAS  Google Scholar 

  43. L.J. Deng, P.H. Zhou, J.L. Xie, L. Zhang, Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007)

    Article  Google Scholar 

  44. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. J. Magn. Magn. Mater. 281, 195–205 (2004)

    Article  CAS  Google Scholar 

  45. J. Ding, P.G. McCormick, R. Street, Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride. J. Magn. Magn. Mater. 124, 1–4 (1993)

    Article  Google Scholar 

  46. Y.F. Bai, W.H. Ma, Y.N. Liu, Y. Liu, J.W. Xue, K. Xu, Y.Q. Liu, G.Z. Zhao, Preparation of graphene-carbonyl iron powder@tri-iron tetroxide composite and its better microwave absorption properties. J. Mater. Sci. Mater. Electron. 30, 5454–5463 (2019)

    CAS  Google Scholar 

  47. B. Quan, X.H. Liang, G.Y. Xu, A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation. New J. Chem 41, 1259–1266 (2017)

    Article  CAS  Google Scholar 

  48. H.M. Wu, G.Z. Xie, Y. Zhu, Improving impedance matching of flaky carbonyl iron based on the surface modification by binary coupling agents. J. Mater. Sci. Mater. Electron. 21, 16279–16286 (2021)

    Google Scholar 

  49. S.-S. Kim, S.-T. Kim, Y.-C. Yoon, K.-S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10 (2005)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 11974188).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HX and XN. The first draft of the manuscript was written by HX and all authors commented on previous versions of the manuscript. This manuscript were guided by XG and CJ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xie Guozhi.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaoyu, H., Guozhi, X., Ningyan, X. et al. Fabrication and microwave absorption properties of the flaky carbonyl iron/graphene oxide composite in S-band. J Mater Sci: Mater Electron 34, 109 (2023). https://doi.org/10.1007/s10854-022-09611-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09611-w

Navigation