Skip to main content
Log in

A study on fabrication of SERS substrates base on porous Si nanostructures and gold nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, we present a quick and straightforward approach to the fabrication of active-surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles (Au NPs) and porous silicon nanostructures (denoted by Si/Au substrate). SERS substrates were fabricated after 3-stage-process, including the Au NPs deposited on Si wafer, etching for porous Si wafer, and coating Au NPs on porous Si to produce SERS-active layers. Sputtering technique is used to coat Au NPs. The surface morphology of each Si/Au substrate in each fabrication process and their characteristics were examined in detail. The absorption spectrum of the Si/Au substrates exhibited a strong absorption band at 480 nm due to surface plasmon resonance of Au NPs. Using Si/Au substrates to detect Rhodamine B (RB) dispersed in ethanol showed that Si/Au substrates morphology greatly enhanced the Raman intensity of RB, and the trace detection limit for RB was estimated to be 0.5 ppm. This result opens up a promising approach to the use of SERS spectroscopy for food, environment, and pharmaceutics applications.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their respective affiliations have been correctly identified

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett 26, 163–166 (1974)

    Article  CAS  Google Scholar 

  2. A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, Wavelength-scanned surface-enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005)

    Article  CAS  Google Scholar 

  3. S.K. Saikin, Y. Chu, D. Rappoport, K.B. Crozier, A.A. Guzik, Separation of electromagnetic and chemical contributions to surface-enhanced Raman Spectra on nanoengineered plasmonic substrates. J. Phys. Chem. Lett 1, 2740–2746 (2010)

    Article  CAS  Google Scholar 

  4. K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal Chem. 390, 113–124 (2008)

    Article  CAS  Google Scholar 

  5. D. Cialla, A. Marz, R. Bohme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal Chem. 403, 27–54 (2012)

    Article  CAS  Google Scholar 

  6. S.B. Chaney, S. Shanmukh, R.A. Dluhy, Y.P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl. Phys. Lett. 87, 031908 (2005)

    Article  Google Scholar 

  7. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R.A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6, 2630–2636 (2006)

    Article  CAS  Google Scholar 

  8. S.J. Lee, J.M. Baik, M. Moskovits, Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver Nanowire. Nano Lett. 8, 3244–3247 (2008)

    Article  CAS  Google Scholar 

  9. J.D. Caldwell, O. Glembocki, F.J. Bezares, N.D. Bassim, R.W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, C. Hosten, Plasmonic Nanopillar arrays for LargeArea, high-enhancement surface enhanced Raman Scattering Sensors. ACS Nano 5, 4046–4055 (2011)

    Article  CAS  Google Scholar 

  10. S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv. Mater. 15, 1595–1598 (2003)

    Article  CAS  Google Scholar 

  11. A.Y. Panarin, S.N. Terekhov, K.I. Kholostov, V.P. Bondarenko, SERS-active substrates based on n-type porous silicon. Appl. Surf. Sci. 256, 6969–6976 (2010)

    Article  CAS  Google Scholar 

  12. M.L. Seol, S.J. Choi, D.J. Baek, T.J. Park, J.H. Ahn, S.Y. Lee, Y.K. Choi, A nanoforest structure for practical surface-enhanced Raman scattering substrates. Nanotechnology 23, 095301 (2012)

    Article  Google Scholar 

  13. X. Yue, H. Li, X. Lv, J. Tang, Porous silicon photonic crystal/silver composite produced by microwaveassisted reduction: applications to surface-enhanced Raman scattering. Opt. Mater: X 2, 100027 (2019)

    CAS  Google Scholar 

  14. M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, M. Kechouane, Formation of nanostructured silicon surfaces by stain etching. Nanoscale Res. Lett. 9, 1–7 (2014)

    Article  CAS  Google Scholar 

  15. E. Vazsonyi, E. Szilagyi, P. Petrik, Z.E. Horvath, T. Lohner, M. Fried, G. Jalsovszk, Porous silicon formation by stain etching. Thin Solid Films 388, 295–302 (2001)

    Article  CAS  Google Scholar 

  16. N. Khinevich, H. Bandarenka, S. Zavatski, K. Girel, A. Tamuleviciene, T. Tamulevicius, S. Tamulevicius, Porous silicon - A versatile platform for mass-production of ultrasensitive SERS-active substrates. Microporous Mesoporous Mater. 323, 111204 (2021)

    Article  CAS  Google Scholar 

  17. V.T. Vo, Y. Gwon, V.D. Phung, Y.D. Son, J.H. Kim, S.W. Lee, Agdeposited porous silicon as a SERSActive substrate for the sensitive detection of catecholamine neurotransmitters. Electron. Mater Lett 17, 292–298 (2021)

    Article  CAS  Google Scholar 

  18. L.T.Q. Ngan, D.T. Cao, C.A. Tuan, L.V. Vu, Improvement of Raman enhancement factor due to the use of silver nanoparticles coated obliquely aligned silicon nanowire arrays in SERS measurements. Int. J. Nanotechnol 12, 358–366 (2015)

    Article  CAS  Google Scholar 

  19. R. Jaina, M. Mathura, S.H. Sikarwara, A. Mittal, Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manage. 85, 956–964 (2007)

    Article  Google Scholar 

  20. B.E. Warren, - X-ray diffraction dover publications (Inc, New York, 1990), p.253

    Google Scholar 

  21. P. Asanithi, S. Chaiyakun, P. Limsuwan, Growth of silver nanoparticles by DC magnetron sputtering. J. Nanomaterials 2012, 963609 (2012)

    Article  Google Scholar 

  22. L. Baojia, H. Lijing, Z. Ming, F. Xiaomeng, M. Ming, Preparation and Spectral Analysis of Gold Nanoparticles using Magnetron Sputtering and Thermal Annealing. J. Wuhan Univ. Technology-Mater Sci Ed 29, 651–655 (2014)

    Article  Google Scholar 

  23. N.D. Thien, N.Q. Hoa, S.C. Doanh, N.T. Thanh, D.K. An, N.N. Long, L.V. Vu, Effect of au thin film thickness and surface nanoparticles morphologies on the optical band gap and photoluminescence of ZnO thin films deposited by pulsed electron deposition technique. J. Mater. Sci: Mater. Electron. 33, 7236–7243 (2022)

    CAS  Google Scholar 

  24. S. Lin, W.L.J. Hasi, X. Lin, S. Han, X.T. Lou, F. Yang, D.Y. Lin, Z.W. Lu, Rapid and sensitive SERS method for determination of rhodamine B in chili powder with paper-based substrates. Anal. Methods 7, 5289–5294 (2015)

    Article  CAS  Google Scholar 

  25. C. Wu, F. Li, F. Lv, P. Yao, M. Bi, T. Xue, Fabrication of hydrogels with nanoparticles as surface-enhanced Raman scattered (SERS) substrates and their application in Raman imaging. Mater. Res. Express 8, 015008 (2021)

    Article  CAS  Google Scholar 

  26. S.Y. Ding, E.M. You, Z.Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042–4076 (2017)

    Article  CAS  Google Scholar 

  27. P.G. Etchegoin, E.C.L. Ru, A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

NDT-Conceptualization, experiment, data analysis, writing. THD-Experiment, data analysis. NQH-Investigation of the crystal structure. SCD-Investigation of the surface morphologies. LQT, NND and NMH-data analysis. LVV-Conceptualization, measurements of diffuse reflection spectra and Raman, data analysis.

Corresponding author

Correspondence to Nguyen Duy Thien.

Ethics declarations

Conflict of interest

We authors declare that we do not have conflict of interest.

Ethical approval

We authors declare that we adhere to ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thien, N.D., Dang, T.H., Doanh, S.C. et al. A study on fabrication of SERS substrates base on porous Si nanostructures and gold nanoparticles. J Mater Sci: Mater Electron 34, 94 (2023). https://doi.org/10.1007/s10854-022-09518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09518-6

Navigation