Skip to main content
Log in

Precursor-dependent resistive switching properties of nanostructured g-C3N4: statistical and experimental investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, 2D layered materials like graphitic carbon nitride (g-C3N4) are gaining significant attention due to their excellent structural and electronic properties. We report the synthesis of g-C3N4 by polycondensation method using different precursors such as urea (U), thiourea (T), melamine (M), and combined precursors (UTM) for resistive switching (RS). Among all devices, UTM precursor-based g-C3N4 switching layer shows good RS characteristics. The distribution of switching voltages of all devices was studied using the Weibull distribution technique. Moreover, switching voltages were modelled and predicted using the statistical time series analysis method. For this, Holt’s Winter Exponential Smoothing technique was utilized. All fabricated devices demonstrated the asymmetric RS effect and double-valued charge flux characteristics, suggesting the presence of a non-ideal memristor effect. The optimized UTM device shows good endurance and retention memory performance. The charge transport results reveal that Ohmic and Child’s square law dominated the conduction of the device. Based on electrical and charge transport results, a plausible filamentary RS effect is presented. This study suggested that the UTM is beneficial for getting excellent structural, morphological and RS properties from g-C3N4 2D nanomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S.B. Barnes, Douglas Carl Engelbart: developing the underlying concepts for contemporary computing. IEEE Ann. Hist. Comput. 19, 16–26 (1997)

    Article  Google Scholar 

  2. J.-S. Lee, Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem. 21, 14097–14112 (2011). https://doi.org/10.1039/c1jm11050k

    Article  CAS  Google Scholar 

  3. B. Sun, G. Zhou, L. Sun, H. Zhao, Y. Chen, F. Yang, Y. Zhao, Q. Song, ABOmultiferroic perovskite materials for memristive memory and neuromorphic computing. RSC Nanoscale Horizons. 6, 939–970 (2021). https://doi.org/10.1039/d1nh00292a

    Article  CAS  Google Scholar 

  4. B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y.N. Zhou, Y.A. Wu, Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater. Today Phys. 18, 100393 (2021). https://doi.org/10.1016/j.mtphys.2021.100393

    Article  CAS  Google Scholar 

  5. H. Abunahla, B. Mohammad, Memristor device modeling, in: Memristor Technol. Synth. Model. Sens. Secur. Appl. 93–104 (2018) . https://doi.org/10.1007/978-3-319-65699-1_6

  6. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012). https://doi.org/10.1038/ncomms1737

    Article  CAS  Google Scholar 

  7. Y. Bai, H. Wu, R. Wu, Y. Zhang, N. Deng, Z. Yu, H. Qian, Study of multi-level characteristics for 3D vertical resistive switching memory. Sci. Rep. 1, 1–7 (2014). https://doi.org/10.1038/srep05780

    Article  CAS  Google Scholar 

  8. K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang, W. Jie, J. Hao, Memristor based on Inorganic and Organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 13, 32606–32623 (2021). https://doi.org/10.1021/acsami.1c07665

    Article  CAS  Google Scholar 

  9. Y. Hou, Y. Li, Z. Zhang, J. Li, D. Qi, X. Chen, J. Wang, B. Yao, M. Yu, T. Lu, J. Zhang, Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano. 15, 1497–1508 (2021). https://doi.org/10.1021/acsnano.0c08921

    Article  CAS  Google Scholar 

  10. M. Bernardi, C. Ataca, M. Palummo, J.C. Grossman, Optical and electronic properties of two-dimensional layered materials. Nanophotonics. 6, 111–125 (2016). https://doi.org/10.1515/nanoph-2015-0030

    Article  Google Scholar 

  11. Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A.M. Lindenberg, K. Xiao, B.J. LeRoy, M. Drndić, J.C.M. Hwang, J. Park, M. Chhowalla, R.E. Schaak, A. Javey, M.C. Hersam, J. Robinson, M. Terrones, 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 042001 (2016). https://doi.org/10.1088/2053-1583/3/4/042001

    Article  CAS  Google Scholar 

  12. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 8, 1–31 (2018). https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  13. J. Liebig, Uber einige Stickstoff -Verbindungen. Ann. Pharm. 2, 1–47 (1834). https://doi.org/10.1002/jlac.18340100102

    Article  Google Scholar 

  14. D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides. Science 271, 53–55 (1996). https://doi.org/10.1126/science.271.5245.53

    Article  CAS  Google Scholar 

  15. F. Zhao, H. Cheng, Y. Hu, L. Song, Z. Zhang, L. Jiang, L. Qu, Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. Nat. Sci. Rep. 4, 1–7 (2014). https://doi.org/10.1038/srep05882

    Article  CAS  Google Scholar 

  16. T.V. Surendra, C.S. Espenti, S.V. Arunachalam, Nanostructured materials for photocatalytic energy conversion. In: Nanostructured, Functional and Flexible Materials for Energy conversion and Storage System (Elsevier, 2020), pp. 325–343. https://doi.org/10.1016/B978-0-12-819552-9.00010-5

  17. T. Mahvelati-Shamsabadi, B.K. Lee, Design of Ag/g-C3N4 on TiO2 nanotree arrays via ultrasonic-assisted spin coating as an efficient photoanode for solar water oxidation: morphology modification and junction improvement. Catal. Today 358, 412–421 (2020). https://doi.org/10.1016/j.cattod.2020.08.005

    Article  CAS  Google Scholar 

  18. F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, S. Wang, Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism.  J. Colloid Interface Sci. 532, 321–330 (2018). https://doi.org/10.1016/j.jcis.2018.07.131

    Article  CAS  Google Scholar 

  19. S. Babar, N. Gavade, H. Shinde, A. Gore, P. Mahajan, K.H. Lee, V. Bhuse, K. Garadkar, An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: sustainable e-waste management. J. Environ. Chem. Eng. 7, 103041 (2019). https://doi.org/10.1016/j.jece.2019.103041

    Article  CAS  Google Scholar 

  20. Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, H. Li, Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Adv. 5, 101552–101562 (2015). https://doi.org/10.1039/c5ra19586a

    Article  CAS  Google Scholar 

  21. S. Martha, A. Nashim, K.M. Parida, Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light.  J. Mater. Chem. A 1, 7816–7824 (2013). https://doi.org/10.1039/c3ta10851a

    Article  CAS  Google Scholar 

  22. X. Wang, B. Sun, X. Li, B. Guo, Y. Zeng, S. Mao, S. Zhu, Y. Xia, S. Tian, W. Luo, Influence of the voltage window on resistive switching memory characteristics based on g-C3N4 device. Ceram. Int. 44, 18108–18112 (2018). https://doi.org/10.1016/j.ceramint.2018.07.016

    Article  CAS  Google Scholar 

  23. S.R. Patil, M.Y. Chougale, T.D. Rane, S.S. Khot, A.A. Patil, O.S. Bagal, S.D. Jadhav, A.D. Sheikh, S. Kim, T.D. Dongale, Solution-processable ZnO thin film memristive device for resistive random access memory application. MDPI Electron. 7, 425 (2018). https://doi.org/10.3390/electronics7120445

    Article  CAS  Google Scholar 

  24. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir. 25, 11269–11273 (2009). https://doi.org/10.1021/la900923z

    Article  CAS  Google Scholar 

  25. S.D. Delekar, A.G. Dhodamani, K.V. More, T.D. Dongale, R.K. Kamat, S.F.A. Acquah, N.S. Dalal, D.K. Panda, Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru(II) sensitizers. ACS Omega 3, 2743–2756 (2018). https://doi.org/10.1021/acsomega.7b01316

    Article  CAS  Google Scholar 

  26. Y. Qin, Y. Ding, H. Tang, Highly efficient visible-light photocatalytic activity of graphitic carbon nitride prepared from melamine-thiourea molecular composite. J. Environ. Chem. Eng. 4, 4374–4384 (2016). https://doi.org/10.1016/j.jece.2016.09.029

    Article  CAS  Google Scholar 

  27. S. Panneri, P. Ganguly, B.N. Nair, A.A.P. Mohamed, K.G.K. Warrier, U.N.S. Hareesh, Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ. Sci. Pollut. Res. 24, 8609–8618 (2017). https://doi.org/10.1007/s11356-017-8538-z

    Article  CAS  Google Scholar 

  28. V. Devthade, D. Kulhari, S.S. Umare, Role of precursors on photocatalytic behavior of graphitic carbon nitride. Mater. Today Proc. 5, 9203–9210 (2018). https://doi.org/10.1016/j.matpr.2017.10.045

    Article  CAS  Google Scholar 

  29. S. Yu, X. Guan, H.P. Wong, On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization, IEEE Int. Electron Devices Meet. (2011), pp. 17.3.1–17.3.4. https://doi.org/10.1109/IEDM.2011.6131572

  30. G. Wang, S. Long, Z. Yu, M. Zhang, Y. Li, D. Xu, H. Lv, Q. Liu, X. Yan, M. Wang, X. Xu, H. Liu, B. Yang, M. Liu, Impact of program / erase operation on the performances of oxide-based resistive switching memory. Nanoscale Res. Lett. 10, 1–7 (2015). https://doi.org/10.1186/s11671-014-0721-2

    Article  CAS  Google Scholar 

  31. P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting, 2002. Spring-Verlag, New York, USA, 2.

  32. J.B. Roldán, F.J. Alonso, A.M. Aguilera, D. Maldonado, M. Lanza, Time series statistical analysis: a powerful tool to evaluate the variability of resistive switching memories. J. Appl. Phys. 125, 174504 (2019). https://doi.org/10.1063/1.5079409

    Article  CAS  Google Scholar 

  33. N. Rodriguez, D. Maldonado, F.J. Romero, F.J. Alonso, A.M. Aguilera, Resistive switching and charge transport in laser-fabricated graphene oxide memristors: a time series and quantum point contact modeling approach. Materials. 12, 3734 (2019). https://doi.org/10.3390/ma12223734

    Article  CAS  Google Scholar 

  34. P.R. Winters, Forecasting sales by exponentially weighted moving averages. Manag. Sci. 6(3), 324–342 (1960)

    Article  Google Scholar 

  35. N. Du, W. Luo, Practical guide for validated memristance measurements. Rev. Sci. Instrum. 84, 023903 (2013). https://doi.org/10.1063/1.4775718

    Article  CAS  Google Scholar 

  36. L.O. Chua, Memristor—the M.C.E. circuit. IEEE Trans. Circuit Theory (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  37. T.S. Bhat, C.C. Revadekar, S.S. Patil, T.D. Dongale, Photo-induced resistive switching in CdS-sensitized–TiO2 nanorod array memristive device. J. Mater. Sci. Mater. Electron. 31, 10919–10929 (2020). https://doi.org/10.1007/s10854-020-03643-w

    Article  CAS  Google Scholar 

  38. R. Wang, H. Li, L. Zhang, Y. Zeng, Z. Lv, J. Yang, J. Mao, Z. Wang, Y. Zhou, S. Han, Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. J. Mater. Chem. C 7, 10203–10210 (2019). https://doi.org/10.1039/c9tc02841b

    Article  CAS  Google Scholar 

  39. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R. Li, Nonvolatile resistive switching in graphene oxide thin films nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009). https://doi.org/10.1063/1.3271177

    Article  CAS  Google Scholar 

  40. B. Yang, C. Hao, F. Wen, B. Wang, C. Mu, J. Xiang, L. Li, B. Xu, Z. Zhao, Z. Liu, Y. Tian, Flexible black-phosphorus nanoflakes/carbon nanotubes composite paper for high-performance all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 44478–44484 (2017). https://doi.org/10.1021/acsami.7b13572

    Article  CAS  Google Scholar 

  41. G. Ding, K. Zeng, K. Zhou, Z. Li, Y. Zhou, Y. Zhai, S.T. Han, Configurable multi-state non volatile memory behaviors in Ti3Cnanosheets. Nanoscale 11, 7102–7110 (2019). https://doi.org/10.1039/C9NR00747D

    Article  CAS  Google Scholar 

  42. C. Gu, H. Mao, W. Tao, Z. Zhou, X. Wang, P. Tan, S. Cheng, W. Huang, L.-B. Sun, X.-Q. Liu, J.-Q. Liu, Facile synthesis of Ti3C2Tx-poly(vinylpyrrolidone) nanocomposites for nonvolatile memory devices with low switching voltage. ACS Appl. Mater. Interfaces 11, 38061–38067 (2019). https://doi.org/10.1021/acsami.9b13711

    Article  CAS  Google Scholar 

  43. H. Mao, C. Gu, S. Yan, Q. Xin, S. Cheng, P. Tan, X. Wang,  F. Xiu, X. Liu, J. Liu, W. Huang, L. Sun, MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv. Electron. Mater. 6, 1900493 (2019). https://doi.org/10.1002/aelm.201900493

    Article  CAS  Google Scholar 

  44. W.J. Sun, Y.Y. Zhao, X.F. Cheng, J.H. He, J.M. Lu, Surface functionalization of single-layered Ti3C2Tx MXene and its application in Multilevel Resistive memory. ACS Appl. Mater. Interfaces. 12, 9865–9871 (2020). https://doi.org/10.1021/acsami.9b16979

    Article  CAS  Google Scholar 

  45. A.C. Khot, T.D. Dongale, J.H. Park, A.V. Kesavan, T.G. Kim, Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. ACS Appl. Mater. Interfaces 13, 5216–5227 (2021). https://doi.org/10.1021/acsami.0c19028

    Article  CAS  Google Scholar 

  46. T.D. Dongale, A.C. Khot, A.V. Takaloo, T.G. Kim, Facile synthesis of nickel cobaltite quasi-hexagonal nanosheets for multilevel resistive switching and synaptic learning applications. NPG Asia Mater 13, 16 (2021). https://doi.org/10.1038/s41427-021-00286-z

    Article  CAS  Google Scholar 

  47. S. Zhu, B. Sun, S. Ranjan, X. Zhu, G. Zhou, H. Zhao, S. Mao, H. Wang, Y. Zhao, G. Fu, Mechanism analysis of a flexible organic memristive memory with capacitance effect and negative differential resistance state. APL Mater. 7, 081117 (2019). https://doi.org/10.1063/1.5100019

    Article  CAS  Google Scholar 

  48. Q. Mao, Z. Ji, J. Xi, Realization of forming-free ZnO-based resistive switching memory by controlling film thickness. J. Phys. D Appl. Phys. 43, 395104 (2010). https://doi.org/10.1088/0022-3727/43/39/395104  

    Article  CAS  Google Scholar 

  49. A. Sleiman, P.W. Sayers, M.F. Mabrook, Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures. J. Appl. Phys. 113, 164506 (2013). https://doi.org/10.1063/1.4803062   

    Article  CAS  Google Scholar 

  50. P.B. Patil, T.D. Dongale, D. Kim, Organic dye-sensitized f-MWCNTs-TiO2 composite for optically controlled resistive switching memory applications. Opt. Mater. 109, 110333 (2020). https://doi.org/10.1016/j.optmat.2020.110333

    Article  CAS  Google Scholar 

  51. B. Sun, Y. Chen, M. Xiao, G. Zhou, S. Ranjan, W. Hou, X. Zhu, Y. Zhao, Simon A.T. Redfern, Y. Norman Zhou, A unified capacitive-coupled memristive model for the nonpinched current-voltage hysteresis loop. Nano Lett. 19, 6461–6465 (2019). https://doi.org/10.1021/acs.nanolett.9b02683

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SLP would like to thank Chhatrapati Shahu Maharaj Research, Traning and Human Development Institute (SARTHI), Pune for providing the financial support under Chhatrapati Shahu Maharaj National Research Fellowship (CSMNRF-2021). RSR is thankful to the Department of Science and Technology for providing INSPIRE fellowship (DST/INSPIRE Fellowship/2019/IF190812), New Delhi. NLT is thankful to DST-SERB for providing financial assistance through the Teachers Associateship for Research Excellence (TARE) scheme (TAR/2021/000307). The financial assistance through DST-PURSE Phase-II (2018–2023) and UGC DSA-Phase II (2018–2023) is highly acknowledged.

Funding

Funding was provided by Chhatrapati Shahu Maharaj Research, Traning and Human Development Institute (SARTHI), Pune under Chhatrapati Shahu Maharaj National Research Fellowship (CSMNRF-2021), Department of Science and Technology under INSPIRE fellowship (DST/INSPIRE Fellowship/2019/IF190812), New Delhi, DST-SERB through the Teachers Associateship for Research Excellence (TARE) scheme (TAR/2021/000307) and DST-PURSE Phase-II (2018–2023) and UGC DSA-Phase II (2018–2023).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were completed by SLP. The first draft of the manuscript was written by SLP, and the experimental tests were carried out by RSR, OYP, SSK, SSS, KVM, VDC, DKK and TDD. The manuscript was revised by SLP, RSR, TDD, and NLT. All authors have commented on previous manuscript versions. All authors read and approved the revised manuscript.

Corresponding authors

Correspondence to T. D. Dongale or N. L. Tarwal.

Ethics declarations

Conflict of interest

The authors declare that, they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

All authors of this article have given informed consent.

Research involving human animals participants

There were no studies involving humans or animals in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.L., Redekar, R.S., Pawar, O.Y. et al. Precursor-dependent resistive switching properties of nanostructured g-C3N4: statistical and experimental investigations. J Mater Sci: Mater Electron 34, 155 (2023). https://doi.org/10.1007/s10854-022-09436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09436-7

Navigation