Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Impact of BaFe12-0.5Cu0.5O19 on structure, elastic, morphology, composition, optical and magnetic behavior of hybrid BaFe12-0.5Cu0.5O19/Co0.6Zn0.4Fe2O4 nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 01 July 2023

This article has been updated

Abstract

In this report, we describe how Copper-doped Barium Hexaferrite (CBH) influences the structure, elasticity, morphology, composition, and optical and magnetic behavior of hybrid BaFe12-0.5Cu0.5O19/Co0.6Zn0.4Fe2O4 (CBH/CZF) nanocomposites. A new study examines the role of CBH in composites prepared by physical mixing. Analysis of the composites was performed using XRD, SEM, EDAX, FTIR, UV, PL, and VSM. XRD confirms the formation of hexagonal and spinel structures along with their cell volume, lattice parameters, stress, strain, and other structural parameters. Elastic parameters and Debye temperature were measured using FTIR. The Young’s modulus of CC90-10 (477 GPa) is greater than Tungsten (400 GPa) which shows that these high-density materials can also provide the best effective shielding against gamma radiation and can be utilized as lead-free radiation shielding materials. Also, such composite having, less lattice energy, and good elastic wave velocity can be typically used in high-density optical storage devices. The morphology, particle size distribution, and a comparison between the crystalline and particle size of the composite are studied by SEM. The purity of the composite produced is analyzed using EDAX studies. From the UV analysis, the optical measurements of the manufactured composite such as transmission, absorption, refractive index, and Urbach energy were analyzed. Both the direct and indirect band gap energies are governed by Tauc’s diagram, which increases with decreasing CBH in the composite. Among all the observed composites, CC60-40 has a smaller crystallite size (19 nm) with good morphology and a larger surface area 62 cm2/g) with an optical band gap of 1.42 eV (absorption and transmission in the visible), suggesting this is a suitable candidate for a visible-light active photocatalyst. The overall structural and optical properties also prove that the material can be used in tunable photonic applications. The refractive index of the composite is between 3.2 and 3.4, which can be used for photo-electrochemical cells, optical detectors, or reflectors. The optical band gap determined by UV–Vis spectroscopy was verified using PL spectra, which reflect semiconducting properties that can be exploited in optoelectronic devices, photocatalysts, and sensor applications. Magnetic properties examined using VSM showed an increase in Ms, Mr, and Hc values with a decrease in CBH concentration. The maximum values for Ms (19.45 emu/g), Mr (3.52 emu/g), and Hc (0.133 kOe) are obtained for the CC60-40 nanocomposite material. Analysis of the composite’s magnetic interaction is done by plotting loop width (ΔH) vs magnetization (M). The magnetic properties of CBH (Ms, Mr, and Hc) can be improved by combining CBH and CZF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Change history

References

  1. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, D. Meyners, Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523–529 (2012). https://doi.org/10.1038/nmat3306

    Article  CAS  Google Scholar 

  2. D. Jung, L. Saleh, Z.J. Berkson, M.F. El-Kady, J.Y. Hwang, N. Mohamed, A.I. Wixtrom, E. Titarenko, Y. Shao, K. McCarthy, J. Guo, I.B. Martini, S. Kraemer, E.C. Wegener, P. Saint-Cricq, B. Ruehle, R. Langeslay, M. Delferro, J.L. Brosmer, C.H. Hendon, M. Gallagher-Jones, J. Rodriguez, K.W. Chapman, J.T. Miller, X. Duan, R.B. Kaner, J.I. Zink, B.F. Chmelka, A.M. Spokoyny, A molecular cross-linking approach for hybrid metal oxides. Nat. Mater. 17, 341–348 (2018). https://doi.org/10.1038/s41563-018-0021-9

    Article  CAS  Google Scholar 

  3. F. Yang, A. Cholewinski, L. Yu, G. Rivers, B. Zhao, A hybrid material that reversibly switches between two stable solid states. Nat. Mater. 18, 874–882 (2019). https://doi.org/10.1038/s41563-019-0434-0

    Article  CAS  Google Scholar 

  4. M.K. Manglam, M. Kar, Tuning of reduced remanent and (BH)max by exchange spring phenomenon in ferrimagnetic composite. J. Magn. Magn. Mater. 560, 169569 (2022). https://doi.org/10.1016/j.jmmm.2022.169569

    Article  CAS  Google Scholar 

  5. M. Mustaqeem, G.A. Naikoo, F. Rahimi, M.Z. Pedram, H. Pourfarzad, I.U. Hassan, F. Arshad, Y.-F. Chen, Rational design of Cu based composite electrode materials for high-performance supercapacitors—a review. J. Energy Storage 51, 104330 (2022). https://doi.org/10.1016/j.est.2022.104330

    Article  Google Scholar 

  6. Y. Zhang, X. Xiaojie, Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds. CrystEng Commun. 22, 6385–6397 (2020). https://doi.org/10.1039/D0CE00928H

    Article  CAS  Google Scholar 

  7. Y. Zhang, X. Xiaojie, Modeling oxygen ionic conductivities of ABO3 Perovskites through machine learning. Chem. Phys. 558, 111511 (2022). https://doi.org/10.1016/j.chemphys.2022.111511

    Article  CAS  Google Scholar 

  8. G. Florio, Structural features of magnetic materials, in Encyclopedia of Smart Materials. ed. by A.-G. Olabi (Elsevier, Amsterdam, 2022), pp.1–9. https://doi.org/10.1016/B978-0-12-815732-9.00095-4

    Chapter  Google Scholar 

  9. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57(7), 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  10. D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, S.A. Gudkova, E.A. Trofimov, A.V. Trukhanov, S.V. Trukhanov, V.A. Turchenko, V.V. Matveev, E. Lahderanta, E. Fadeev, T.I. Zubar, M.V. Zdorovets, A.L. Kozlovsky, Corrigendum to “Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12-xTixO19.” J. Magn. Magn. Mater. 498, 166117 (2020). https://doi.org/10.1016/j.jmmm.2020.166544

    Article  CAS  Google Scholar 

  11. M. Hähsler, M. Zimmermann, S. Heißler, S. Behrens, Sc-doped barium hexaferrite nanodiscs: tuning morphology and magnetic properties. J. Magn. Magn. Mater. 500, 166349 (2020). https://doi.org/10.1016/j.jmmm.2019.166349

    Article  CAS  Google Scholar 

  12. N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Sadaqat, A.V. Trukhanov, M.A. Gondal, A.S. Hakeem, S.V. Trukhanov, M.G. Vakhitov, D.S. Klygach, A. Manikandan, A. Baykal, Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) hard-soft ferrite nanocomposites: structure, magnetic and microwave properties. Nanomaterials 10, 2134 (2020). https://doi.org/10.3390/nano10112134

    Article  CAS  Google Scholar 

  13. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Sadaqat, A.D. Korkmaz, N.A. Algarou, H. Aydın, A. Baykal, M.S. Toprak, Review on functional bi-component nanocomposites based on hard/soft ferrites: structural, magnetic, electrical and microwave absorption properties. Nano-Struct. Nano-Objects 26, 100728 (2021). https://doi.org/10.1016/j.nanoso.2021.100728

    Article  CAS  Google Scholar 

  14. D. Roy, C. Shivakumara, P.S. Anil Kumar, Observation of the exchange spring behavior in hard–soft-ferrite nanocomposite. J. Magn. Magn. Mater. 321(5), L11–L14 (2009). https://doi.org/10.1016/j.jmmm.2008.09.017

    Article  CAS  Google Scholar 

  15. S. Kumar, S. Guha, S. Supriya, L.K. Pradhan, M. Kar, Correlation between crystal structure parameters with magnetic and dielectric parameters of cu-doped barium hexaferrite. J. Magn. Magn. Mater. 499, 166213 (2019). https://doi.org/10.1016/j.jmmm.2019.166213

    Article  CAS  Google Scholar 

  16. J. Feng, R. Xiong, Y. Liu, Su. Fangyi, X. Zhang, Preparation of cobalt substituted zinc ferrite nanopowders via auto-combustion route: an investigation to their structural and magnetic properties. J. Mater. Sci. 29, 18358–18371 (2018). https://doi.org/10.1007/s10854-018-9950-y

    Article  CAS  Google Scholar 

  17. M.K. Manglam, S. Kumari, J. Mallick, A. Shukla, M. Kar, Magnetic interaction between soft and hard ferrimagnetic phases in BaFe12O19 + CuFe2O4 composite. Phys. Scripta 97, 035809 (2022). https://doi.org/10.1088/1402-4896/ac53c5

    Article  Google Scholar 

  18. M.K. Raju, FT-IR studies of Cu substituted Ni-Zn ferrites for structural and vibrational investigations. Chem. Sci. Trans. 4(1), 137–142 (2015). https://doi.org/10.7598/cst2015.957

    Article  CAS  Google Scholar 

  19. Q. Zhang, Z. Xia, Y.-B. Cheng, Gu. Min, High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 9, 1183 (2018). https://doi.org/10.1038/s41467-018-03589-y

    Article  CAS  Google Scholar 

  20. N. Narayanan, N.K. Deepak, Ga dopant induced band gap broadening and conductivity enhancement in spray pyrolysed Zn0.85Ca0.15O thin films. Mater. Res. 21(6), 628–636 (2018). https://doi.org/10.1590/1980-5373-MR-2018-0034

    Article  Google Scholar 

  21. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12(4), 470–475 (2018). https://doi.org/10.1080/16583655.2018.1473946

    Article  Google Scholar 

  22. M.K. Manglam, S.N. Rout, S. Kumari, S. Kumar, M. Kar, Structural, magnetic and optical properties of (0.45) Ni0.5Zn0.5Fe2O4 + (05.5) BaFe12O19 composite. Mater. Today 57(2), 418–421 (2022). https://doi.org/10.1016/j.matpr.2021.12.431

    Article  CAS  Google Scholar 

  23. S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J. Phys. Chem. Solids 151, 109928 (2021). https://doi.org/10.1016/j.jpcs.2020.109928

    Article  CAS  Google Scholar 

  24. A. Qasem, Re: what are some materials with high refractive index, but transparent in visible and near IR?. https://www.researchgate.net/post/What-are-some-materials-with-high-refractive-index-but-transparent-in-visible-and-near-IR/6054fe9a09d63750fe0c96a5/citation/download (2021)

  25. M.N. Mehathaj, N. Padmanathan, E. Sivasenthil, Doping catalysed unintentional hydrogenation effect on the structural, optical and magnetic properties of Co-doped ZnO semiconductor nanoparticles. J. Mater. Sci. 33, 11523–11541 (2022). https://doi.org/10.1007/s10854-022-08126-8

    Article  CAS  Google Scholar 

  26. T.M. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compds. 741, 123–130 (2018). https://doi.org/10.1016/j.jallcom.2018.01.123

    Article  CAS  Google Scholar 

  27. Qu. Jing Liqiang, W.B. Yichun, Li. Shudan, J. Baojiang, Fu. Yang Libin, W.F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90(12), 1773–1787 (2006). https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

  28. Yu. Jia-Guo, Yu. Huo-Gen, B. Cheng, X.-J. Zhao, J.C. Yu, W.-K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 107(50), 13871–13879 (2003). https://doi.org/10.1021/jp036158y

    Article  CAS  Google Scholar 

  29. H.Q. Jiang, P. Wang, X.L. Guo, H.Z. Xian, Preparation and characterization of low-amount Yb3+-doped TiO2 photocatalyst. Russ. Chem. Bull. 55, 1743–1747 (2006). https://doi.org/10.1007/s11172-006-0482-x

    Article  CAS  Google Scholar 

  30. A.N. Kadam, J. Lee, S.V. Nipane, S.-W. Lee, 11—Nanocomposites for visible light photocatalysis. Micro and Nano Technologies, in Nanostructured Materials for Visible Light Photocatalysis. ed. by A.K. Nayak, N.K. Sahu (Elsevier, Amsterdam, 2022), pp.295–317. https://doi.org/10.1016/B978-0-12-823018-3.00017-8

    Chapter  Google Scholar 

  31. M. Hadi, K.M. Batoo, A. Chauhan, O.M. Aldossary, R. Verma, Y. Yang, Tuning of structural, dielectric, and electronic properties of Cu doped Co–Zn ferrite nanoparticles for multilayer inductor chip applications. Magnetochemistry 7, 53 (2021). https://doi.org/10.3390/magnetochemistry7040053

    Article  CAS  Google Scholar 

  32. M.A. Almessiere, Y. Slimani, A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compds. 762, 389–397 (2018). https://doi.org/10.1016/j.jallcom.2018.05.232

    Article  CAS  Google Scholar 

  33. R. Pandey, L.K. Pradhan, S. Kumari, M.K. Manglam, S. Kumar, M. Kar, Surface magnetic interactions between Bi0.85La0.15FeO3 and BaFe12O19 nanomaterials in (1–x) Bi0.85La0.15FeO3-(x) BaFe12O19 nanocomposites. J. Magn. Magn. Mater. 508, 166862 (2020). https://doi.org/10.1016/j.jmmm.2020.166862

    Article  CAS  Google Scholar 

  34. M.K. Manglam, J. Mallick, S. Kumari, R. Pandey, M. Kar, Crystal structure and magnetic properties study on barium hexaferrite (BHF) and cobalt zinc ferrite (CZF) in composites. Solid State Sci. 113, 106529 (2021). https://doi.org/10.1016/j.solidstatesciences.2020.106529

    Article  CAS  Google Scholar 

  35. M.K. Manglam, S. Kumari, L.K. Pradhan, S. Kumar, M. Kar, Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite. Physica B 588, 412200 (2020). https://doi.org/10.1016/j.physb.2020.412200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to our President, Chancellor, Chief Executive Officer, Vice-Chancellor, and Registrar of Karpagam Academy of Higher Education, Coimbatore, India, for providing facilities and encouragement.

Funding

The authors declare that no funds, grants, or other support were received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, Methodology, Materials Preparation, Characterization, Writing—original draft. AS: Formal analysis, Writing—review, and Editing. ES: Supervision, Investigation, Resources. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sivasenthil Elangeeran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-023-10906-9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakaran, A., Sudhakaran, A. & Elangeeran, S. RETRACTED ARTICLE: Impact of BaFe12-0.5Cu0.5O19 on structure, elastic, morphology, composition, optical and magnetic behavior of hybrid BaFe12-0.5Cu0.5O19/Co0.6Zn0.4Fe2O4 nanocomposites. J Mater Sci: Mater Electron 33, 26980–27001 (2022). https://doi.org/10.1007/s10854-022-09361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09361-9

Navigation