Skip to main content
Log in

CoFe/C heterostructured fiber composites derived from discarded cigarette filters for excellent microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Exploiting the electromagnetic wave absorbers with high microwave absorption performance by establishing the heterostructure in the carbon-based materials is an exciting strategy to address the issue of electromagnetic pollution. CoFe or Co alloy is introduced into carbon-based absorbing materials to optimize the impedance matching and enhance the magnetic loss. Herein, CoFe/C heterostructured fiber composites are prepared from the discarded cigarette filters by the wet chemical immersion and subsequent calcination for high-quality light microwave absorbing materials. The CoFe/C fiber composites calcined at 950 °C temperature remarkably achieve a − 53.8 dB strong reflection loss value at 1.57 mm matching thickness and 5.3 GHz broad bandwidth. This work should provide an effective strategy for the utilization of discarded cigarette filters as high microwave absorption performance materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. All data sharing and data citation is encouraged.

References

  1. B. Rka, C. Ss, D. Ej et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091

    Article  CAS  Google Scholar 

  2. S. Acharya, P. Alegaonkar, S. Datar, Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem. Eng. J. 374, 144–154 (2019). https://doi.org/10.1016/j.cej.2019.05.078

    Article  CAS  Google Scholar 

  3. B. Wang, Q. Wu, Y. Fu et al., A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 86, 91–109 (2021). https://doi.org/10.1016/j.jmst.2020.12.078

    Article  CAS  Google Scholar 

  4. C.C.Z.F. Wu, M.M. Wang, X. Cao, Y. Zhang, P. Song, T.Y. Zhang, X.L. Ye, Y. Yang, W.H. Gu, J.D. Zhou, Y.Z. Huang, Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020). https://doi.org/10.1002/smll.202001686

    Article  CAS  Google Scholar 

  5. X. Zeng, X. Cheng, R. Yu et al., Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168(6), 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028

    Article  CAS  Google Scholar 

  6. D. Zhi, T. Li, J. Li et al., A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. B 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642

    Article  CAS  Google Scholar 

  7. S. Gao, G. Wang, L. Guo et al., Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668

    Article  CAS  Google Scholar 

  8. S. Gao, S.H. Yang, H.Y. Wang et al., Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162, 438–444 (2020). https://doi.org/10.1016/j.carbon.2020.02.031

    Article  CAS  Google Scholar 

  9. X. Li, M. Cao, X. Pang et al., Microtubule-based hierarchical porous carbon for lightweight and strong wideband microwave absorption. J. Mat. Chem. 9(5), 1649–1656 (2021). https://doi.org/10.1039/D0TC04486E

    Article  CAS  Google Scholar 

  10. J. Xu, Y. Cui, J. Wang et al., Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chem. Eng. J. 401(16), 126027 (2020). https://doi.org/10.1016/j.cej.2020.126027

    Article  CAS  Google Scholar 

  11. W. Yang, B. Jiang, Z. Liu et al., Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. J. Mater. Sci. Technol. 70, 214–223 (2021). https://doi.org/10.1016/j.jmst.2020.08.059

    Article  CAS  Google Scholar 

  12. L. Yuan, B. Zheng, J. Kunstmann et al., Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mat. 46(8), 617–623 (2020). https://doi.org/10.1038/s41563-020-0670-3

    Article  CAS  Google Scholar 

  13. Y. Wei, K. Zhong, T. Jiang et al., Gumdrop-cake-like CuNi/C nanofibers with tunable microstructure for microwave absorbing application. Ceram. Int. 46(8), 11406–11415 (2020). https://doi.org/10.1016/j.ceramint.2020.01.171

    Article  CAS  Google Scholar 

  14. H. Zhao, X. Xu, Y. Wang et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407

    Article  CAS  Google Scholar 

  15. J. Li, F. Zhang, H. Lu et al., Heterogeneous rod-like Ni@C composites toward strong and stable microwave absorption performance. Carbon 181, 358–369 (2021). https://doi.org/10.1016/j.carbon.2021.05.031

    Article  CAS  Google Scholar 

  16. P. Liu, S. Gao, W. Huang et al., Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon 159, 83–93 (2020). https://doi.org/10.1016/j.carbon.2019.12.021

    Article  CAS  Google Scholar 

  17. P. Liu, S. Gao, X. Liu et al., Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. B 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992

    Article  CAS  Google Scholar 

  18. B. Yza, B. Hma, B. Ysa et al., TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. B 193, 108028 (2020). https://doi.org/10.1016/j.compositesb.2020.108028

    Article  CAS  Google Scholar 

  19. Y. Zhao, W. Wang, J. Wang et al., Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance. Carbon 173, 1059–1072 (2021). https://doi.org/10.1016/j.carbon.2020.11.090

    Article  CAS  Google Scholar 

  20. L.A. Di, A. Zg, A. Zz et al., Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 408, 127313 (2020). https://doi.org/10.1016/j.cej.2020.127313

    Article  CAS  Google Scholar 

  21. R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin et al., Electromagnetic and optical characteristics of wrinkled Ni nanostructure coated on carbon microspheres. Chem. Eng. J. 405, 126985 (2021). https://doi.org/10.1016/j.cej.2020.126985

    Article  CAS  Google Scholar 

  22. J. Qiao, X. Zhang, C. Liu et al., Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. B 200, 108343 (2020). https://doi.org/10.1016/j.compositesb.2020.108343

    Article  CAS  Google Scholar 

  23. J. Tao, J. Zhou, Z. Yao et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062

    Article  CAS  Google Scholar 

  24. G. Wang, S. On, Y. Zhao et al., Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8(46), 24368–24387 (2020). https://doi.org/10.1039/D0TA08515D

    Article  CAS  Google Scholar 

  25. Y. Wang, X. Di, Z. Lu et al., Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 187, 404–414 (2022). https://doi.org/10.1016/j.carbon.2021.11.027

    Article  CAS  Google Scholar 

  26. R. Qin, A. Ou, Y. Li et al., Noticeably enhanced microwave absorption performance via constructing molecular-level interpenetrating carbon network heterostructure. Carbon 183(1), 858–871 (2021). https://doi.org/10.1016/j.carbon.2021.07.044

    Article  CAS  Google Scholar 

  27. W. Huang, X. Zhang, Y. Zhao et al., Hollow N-doped carbon polyhedrons embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 167, 19–30 (2020). https://doi.org/10.1016/j.carbon.2020.05.073

    Article  CAS  Google Scholar 

  28. W. Gu, X. Cui, J. Zheng et al., Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054

    Article  CAS  Google Scholar 

  29. M. He, Y. Zhou, T. Huang et al., Flower-like CoS hierarchitectures@polyaniline organic-inorganic heterostructured composites: preparation and enhanced microwave absorption performance. Compos. Sci. Technol. 200, 108403 (2020). https://doi.org/10.1016/j.compscitech.2020.108403

    Article  CAS  Google Scholar 

  30. S.U. Rehman, J. Wang, Q. Luo et al., Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019). https://doi.org/10.1016/j.cej.2019.05.040

    Article  CAS  Google Scholar 

  31. X. Su, J. Wang, X. Zhang et al., Construction of sandwich-like NiCo2O4/graphite nanosheets/NiCo2O4 heterostructures for a tunable microwave absorber. Ceram. Int. 46(11), 19293–19301 (2020). https://doi.org/10.1016/j.ceramint.2020.04.269

    Article  CAS  Google Scholar 

  32. J. Wang, Q. Li, J. Ren et al., Synthesis of bowknot-like N-doped Co@C magnetic nanoparticles constituted by a cicular structural units for excellent microwave absorption. Carbon 181, 28–39 (2021). https://doi.org/10.1016/j.carbon.2021.05.028

    Article  CAS  Google Scholar 

  33. X. Zhou, Y. Wang, C. Gong et al., Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: a comprehensive review. Chem. Eng. J. 402, 126189 (2020). https://doi.org/10.1016/j.cej.2020.126189

    Article  CAS  Google Scholar 

  34. L.X. Li, C. Jia, X. Zhu et al., Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents. J. Clean. Prod. 256, 120326 (2020). https://doi.org/10.1016/j.jclepro.2020.120326

    Article  CAS  Google Scholar 

  35. H. Xu, Y. Liu, Q. Bai et al., Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries. J. Mater. Chem. A 7(8), 3558–3562 (2019). https://doi.org/10.1039/C8TA11615F

    Article  CAS  Google Scholar 

  36. B. Wang, H. Chen, S. Wang et al., Construction of core-shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness. Carbon 184, 223–231 (2021). https://doi.org/10.1016/j.carbon.2021.08.009

    Article  CAS  Google Scholar 

  37. Y. Xiong, L. Xu, C. Yang et al., Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8, 18863–18871 (2020). https://doi.org/10.1039/D0TA05540A

    Article  CAS  Google Scholar 

  38. X. Liang, Z. Man, B. Quan et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(8), 12 (2020). https://doi.org/10.1007/s40820-020-00432-2

    Article  CAS  Google Scholar 

  39. P. Liu, S. Gao, G. Zhang et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Func. Mater. 31, 27 (2021). https://doi.org/10.1002/adfm.202102812

    Article  CAS  Google Scholar 

  40. A. Hz, C.A. Yan, Z.A. Zhu et al., Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos. B 196, 108119 (2020). https://doi.org/10.1016/j.compositesb.2020.108119

    Article  CAS  Google Scholar 

  41. F. Wu, K. Yang, Q. Li et al., Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 173, 918–931 (2021). https://doi.org/10.1016/j.carbon.2020.11.088

    Article  CAS  Google Scholar 

  42. Y.J. Chen, P. Gao, R.X. Wang et al., Porous Fe3O4/SnO2 core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 113(23), 10061–10064 (2009). https://doi.org/10.1021/jp902296z

    Article  CAS  Google Scholar 

  43. S. Dong, P. Hu, X. Li et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020). https://doi.org/10.1016/j.cej.2020.125588

    Article  CAS  Google Scholar 

  44. Y.H. Wu, K. Peng, Z. Man et al., A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption. Carbon 188, 503–512 (2022). https://doi.org/10.1016/j.carbon.2021.12.025

    Article  CAS  Google Scholar 

  45. W.A. Shuang, C.B. Tao, A. Zs et al., Preparation of CoFe@N-doped C/rGO composites derived from CoFe prussian blue analogues for efficient microwave absorption. J. Colloid Interface Sci. 610(2), 395–406 (2021). https://doi.org/10.1016/j.jcis.2021.12.051

    Article  CAS  Google Scholar 

  46. L. Xu, J. Tao, X. Zhang et al., Co@N-doped double-shell hollow carbon via self-templating-polymerization strategy for microwave absorption. Carbon 188, 34–44 (2022). https://doi.org/10.1016/j.carbon.2021.11.043

    Article  CAS  Google Scholar 

  47. Z. Zhang, Z. Cai, Z. Wang et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13(4), 29 (2021). https://doi.org/10.1007/s40820-020-00582-3

    Article  CAS  Google Scholar 

  48. J. Cui, X. Wang, L. Huang et al., Environmentally friendly bark-derived co-doped porous carbon composites for microwave absorption. Carbon 187, 115–125 (2022). https://doi.org/10.1016/j.carbon.2021.10.077

    Article  CAS  Google Scholar 

  49. S. Wei, T. Chen, Q. Wang et al., Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. J. Colloid Interface Sci. 593, 370–379 (2021). https://doi.org/10.1016/j.jcis.2021.02.120

    Article  CAS  Google Scholar 

  50. A. Zs, A. Xl, S. Xin et al., Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic waveabsorption performance. Carbon 151, 36–45 (2019). https://doi.org/10.1016/j.carbon.2019.05.025

    Article  CAS  Google Scholar 

  51. H. Xu, G. Zhang, Y. Wang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14(1), 102 (2022). https://doi.org/10.1007/s40820-022-00841-5

    Article  CAS  Google Scholar 

  52. P. Liu, Y. Wang, G. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32, 33 (2022). https://doi.org/10.1002/adfm.202202588

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (52262012, 51771085, 51571104, 51801087, and 51801088) and the Innovation Fund Project of the Gansu Provincial Department of Education (2021A-030).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by YW, YY, JZ, HS, YW, XW, RX, JL, JZ, and YP. The first draft of the manuscript was written by YW, JZ, and YP. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junwei Zhang or Yong Peng.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3606 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Yu, Y., Zhu, J. et al. CoFe/C heterostructured fiber composites derived from discarded cigarette filters for excellent microwave absorption. J Mater Sci: Mater Electron 33, 24920–24932 (2022). https://doi.org/10.1007/s10854-022-09201-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09201-w

Navigation