Skip to main content
Log in

Effect of morphology and content of Ni nanoparticles on electromagnetic shielding coatings with salt resistance and heating performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni/CNTs shielding coatings are obtained on the surface of polymethylmethacrylate (PMMA) by scraping and electroless plating. The effects of pH, temperature and electroless plating time on the structure and performance of the coating are studied through orthogonal experiments, which provide guidance for the optimization of the quality of Ni coatings in the production process. The relationship between the surface morphology attributed to the Ni particles on carbon nanotubes (CNTs) and the mechanism of electromagnetic shielding performance is discussed in depth. The mechanism of electromagnetic shielding depends on the content of Ni nanoparticles. When the content of nickel atoms on the surface is large, the reflection loss is dominant. At this time, a uniform and dense nickel coating with a scale-like structure can be obtained. The total shielding efficiency (SET) value of the corresponding Ni/CNTs coating with good salt resistance and a certain Joule heating performance can reach 40.9 dB. In contrast, when the content is small, the absorption loss is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Z. Guo, P. Ren, J. Wang, J. Tang, F. Zhang, Z. Zong, Z. Chen, Y. Jin, F. Ren, Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding. Compos. B Eng. 236, 109836 (2022)

    Article  CAS  Google Scholar 

  2. X. Jia, B. Shen, L. Zhang, W. Zheng, Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. B Eng. 198, 108250 (2020)

    Article  CAS  Google Scholar 

  3. F. Jiang, X. Wang, D. Wu, Magnetic microencapsulated phase change materials with an organo-silica shell: design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films. Energy 98, 225–239 (2016)

    Article  CAS  Google Scholar 

  4. R.K. Mishra, A. Dutta, P. Mishra, S. Thomas, in Advanced materials for electromagnetic shielding: fundamentals, properties, and applications (John Wiley & Sons, Inc., Hoboken, 2018), pp.147–166

    Book  Google Scholar 

  5. C. Qiao, H. Wu, X. Xu, Z. Guan, W. Ou-Yang, Electrical conductivity enhancement and electronic applications of 2D Ti3C2Tx MXene materials. Adv. Mater. Interf. 8(24), 2100903 (2021)

    Article  CAS  Google Scholar 

  6. K. Raagulan, R. Braveenth, H.J. Jang, Y. Seon Lee, C.M. Yang, B. Mi Kim, J.J. Moon, K.Y. Chai, Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials 11(10), 1803 (2018)

    Article  Google Scholar 

  7. H. Xiao, K. Zeng, J. Hu, G. Yang, Multiple cooperative systems obtained by powder metallurgy-like processing method: Adenine containing phthalonitrile/graphene/Fe 3 O 4 high-performance composites with ultra-high EMI shielding. eXPRESS Polym. Lett. 15(8), 791 (2021)

    Article  CAS  Google Scholar 

  8. K. Cheng, W. Xiong, Y. Li, L. Hao, C. Yan, Z. Li, Z. Liu, Y. Wang, K. Essa, L. Lee, In-situ deposition of three-dimensional graphene on selective laser melted copper scaffolds for high performance applications. Compos. A Appl. Sci. Manuf. 135, 105904 (2020)

    Article  CAS  Google Scholar 

  9. K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 11, 112–118 (2017)

    Article  CAS  Google Scholar 

  10. A. Voronin, Y. Fadeev, I. Govorun, I. Podshivalov, M. Simunin, I. Tambasov, D. Karpova, T. Smolyarova, A. Lukyanenko, A. Karacharov, Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance. J. Mater. Sci. 56(26), 14741–14762 (2021)

    Article  CAS  Google Scholar 

  11. S. Uzun, M. Han, C.J. Strobel, K. Hantanasirisakul, A. Goad, G. Dion, Y. Gogotsi, Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon 174, 382–389 (2021)

    Article  CAS  Google Scholar 

  12. J. Zhang, Z. Wang, J. Li, Y. Dong, A. He, G. Tan, Q. Man, B. Shen, J. Wang, W. Xia, Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 96, 11–20 (2022)

    Article  Google Scholar 

  13. K. Topp, H. Haase, C. Degen, G. Illing, B. Mahltig, Coatings with metallic effect pigments for antimicrobial and conductive coating of textiles with electromagnetic shielding properties. J. Coat. Technol. Res. 11(6), 943–957 (2014)

    Article  CAS  Google Scholar 

  14. H.S. Lee, J.H. Park, J.K. Singh, H.J. Choi, S. Mandal, J.M. Jang, H.M. Yang, Electromagnetic shielding performance of carbon black mixed concrete with Zn–Al metal thermal spray coating. Materials 13(4), 895 (2020)

    Article  CAS  Google Scholar 

  15. K. Zhang, X. Gu, Q. Dai, B. Yuan, Y. Yan, M. Guo, Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance. Vacuum 170, 108990 (2019)

    Article  CAS  Google Scholar 

  16. J. Duan, X. Wang, Y. Li, Z. Liu, Effect of double-layer composite absorbing coating on shielding effectiveness of electromagnetic shielding fabric. Mater. Res. Express 6(8), 086109 (2019)

    Article  CAS  Google Scholar 

  17. Z. Guo, P. Ren, B. Fu, F. Ren, Y. Jin, Z. Sun, Multi-layered graphene-Fe3O4/poly (vinylidene fluoride) hybrid composite films for high-efficient electromagnetic shielding. Polym. Testing 89, 106652 (2020)

    Article  CAS  Google Scholar 

  18. T. Pan, Y. Zhang, C. Wang, H. Gao, B. Wen, B. Yao, Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos. Sci. Technol. 188, 107991 (2020)

    Article  CAS  Google Scholar 

  19. S.Y. Liao, X.Y. Wang, X.M. Li, Y.J. Wan, T. Zhao, Y.G. Hu, P.L. Zhu, R. Sun, C.P. Wong, Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 422, 129962 (2021)

    Article  CAS  Google Scholar 

  20. L. Li, Y. Cao, X. Liu, J. Wang, Y. Yang, W. Wang, Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interf. 12(24), 27350–27360 (2020)

    Article  CAS  Google Scholar 

  21. Y. Xu, Y. Yang, H. Duan, J. Gao, D.X. Yan, G. Zhao, Y. Liu, Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Appl. Surf. Sci. 455, 856–863 (2018)

    Article  CAS  Google Scholar 

  22. J. Huang, D. Sun, G. Li, X. Wang, H. Ma, W. Zhang, Z. Chen, H. Li, C. Gui, Lightweight and textured Ni@ Cu-encapsulated carbon tube with outstanding electromagnetic interference shielding performance. Compos. Sci. Technol. 228, 109636 (2022)

    Article  CAS  Google Scholar 

  23. W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu, M.G. Ma, J. Bian, Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv. 9(51), 29636–29644 (2019)

    Article  CAS  Google Scholar 

  24. Y. Yao, S. Jin, H. Zou, L. Li, X. Ma, G. Lv, F. Gao, X. Lv, Q. Shu, Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci. 56(11), 6549–6580 (2021)

    Article  CAS  Google Scholar 

  25. P. Gahlout, V. Choudhary, EMI shielding response of polypyrrole-MWCNT/polyurethane composites. Synth. Met. 266, 116414 (2020)

    Article  CAS  Google Scholar 

  26. K. Yang, H. Mei, D. Han, L. Cheng, Enhanced electromagnetic shielding property of C/SiC composites via electrophoretically-deposited CNTs onto SiC coating. Ceram. Int. 44(16), 20187–20191 (2018)

    Article  CAS  Google Scholar 

  27. S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 8(21), 7962–7972 (2020)

    Article  CAS  Google Scholar 

  28. Q. Men, S. Wang, Z. Yan, B. Zhao, L. Guan, G. Chen, X. Guo, R. Zhang, R. Che, Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv. Compos. Hybrid Mater. 2022, 1–11 (2022)

    Google Scholar 

  29. S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. A Appl. Sci. Manuf. 114, 49–71 (2018)

    Article  CAS  Google Scholar 

  30. S.M. Zachariah, Y. Grohens, N. Kalarikkal, S. Thomas, Hybrid materials for electromagnetic shielding: a review. Polym. Compos. 43(5), 2507–2544 (2022)

    Article  CAS  Google Scholar 

  31. S. Wu, Z. Zhao, H. Hou, X. Xue, EMI shielding nanocomposite laminates with high temperature resistance hydrophobicity and anticorrosion properties. Nanomaterials 11(11), 3155 (2021)

    Article  CAS  Google Scholar 

  32. S. Biswas, S. Bose, EMI shielding materials and coatings derived from polymeric nanocomposites, in Nanotechnology in textiles. (Jenny Stanford Publishing, 2020), pp.825–867

    Chapter  Google Scholar 

  33. P. Hu, J. Lyu, C. Fu, W.B. Gong, J. Liao, W. Lu, Y. Chen, X. Zhang, Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1), 688–697 (2019)

    Article  Google Scholar 

  34. Y. Li, X. Lan, F. Wu, J. Liu, P. Huang, Y. Chong, H. Luo, B. Shen, W. Zheng, Steam-chest molding of polypropylene/carbon black composite foams as broadband EMI shields with high absorptivity. Compos. Commun. 22, 100508 (2020)

    Article  Google Scholar 

  35. W. Xingran, W. Minghao, D. Dongxing, L. Shanzhe, Z. Xuedong, Z. Hongfu, Research progress in electromagnetic shielding performance of polymer/carbon fillers foaming composites. China Plastics 34(10), 110 (2020)

    Google Scholar 

  36. E. Mikinka, M. Siwak, Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review. J. Mater. Sci.: Mater. Electron. 32(20), 24585–24643 (2021)

    CAS  Google Scholar 

  37. T.K. Mishra, A. Kumar, S. Sinha, Investigation of sliding wear behaviour of Ni-WC microwave cladding. Mater. Today: Proc. 26, 1418–1422 (2020)

    CAS  Google Scholar 

  38. G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik, Y. Ding, Z. Guo, Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 1–16 (2021)

    Article  Google Scholar 

  39. B.J. Kim, K.M. Bae, Y.S. Lee, K.H. An, S.J. Park, EMI shielding behaviors of Ni-coated MWCNTs-filled epoxy matrix nanocomposites. Surf. Coat. Technol. 242, 125–131 (2014)

    Article  CAS  Google Scholar 

  40. J. Zhang, D. Zhu, S. Zhang, H. Cheng, S. Chen, R. Tang, Z.H. Hang, T. Zhang, X. Zhang, Z. Yang, Asymmetric electromagnetic shielding performance based on spatially controlled deposition of nickel nanoparticles on carbon nanotube sponge. Carbon 194, 290–296 (2022)

    Article  CAS  Google Scholar 

  41. L. Wu, X. Liu, G. Wan, X. Peng, Z. He, S. Shi, G. Wang, Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers. Chem. Eng. J. 448, 137600 (2022)

    Article  CAS  Google Scholar 

  42. X. Li, W. You, C. Xu, L. Wang, L. Yang, Y. Li, R. Che, 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13(1), 1–14 (2021)

    Article  Google Scholar 

  43. H. Liu, Z. Sun, Z. Yan, A. Li, Z. Guo, L. Qian, In situ growth of 3D multi-interface Ni@ carbon nanotube networks towards highly-efficient microwave absorption. J. Alloy Compd. 918, 165774 (2022)

    Article  CAS  Google Scholar 

  44. S.H. Kim, K.Y. Rhee, S.J. Park, Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: thermal conductivity and fracture resistance. Compos. B Eng. 192, 107983 (2020)

    Article  CAS  Google Scholar 

  45. S.H. Kim, S.J. Park, Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites. Compos. B Eng. 227, 109387 (2021)

    Article  CAS  Google Scholar 

  46. S.G. Coombs, S. Khodjaniyazova, F.V. Bright, Exploiting the 3-Aminopropyltriethoxysilane (APTES) autocatalytic nature to create bioconjugated microarrays on hydrogen-passivated porous silicon. Talanta 177, 26–33 (2018)

    Article  CAS  Google Scholar 

  47. D.B. Mawhinney, J.A. Glass, J.T. Yates, FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101(7), 1202–1206 (1997)

    Article  CAS  Google Scholar 

  48. N. Aissaoui, L. Bergaoui, J. Landoulsi, J.F. Lambert, S. Boujday, Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir 28(1), 656–665 (2012)

    Article  CAS  Google Scholar 

  49. R. Pena-Alonso, F. Rubio, J. Rubio, J. Oteo, Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci. 42(2), 595–603 (2007)

    Article  CAS  Google Scholar 

  50. S. Bi, H. Zhao, L. Hou, Y. Lu, Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding. Appl. Surf. Sci. 419, 465–475 (2017)

    Article  CAS  Google Scholar 

  51. W. Xin, M.G. Ma, F. Chen, Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Appl. Nano Mater. 4(7), 7234–7243 (2021)

    Article  CAS  Google Scholar 

  52. H. Wu, Y. Xie, Y. Ma, B. Zhang, B. Xia, P. Zhang, W. Qian, D. He, X. Zhang, B.W. Li, C.W. Nan, Aqueous MXene/Xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 18(16), 2107087 (2022)

    Article  CAS  Google Scholar 

  53. E. Li, Y. Pan, C. Wang, C. Liu, C. Shen, C. Pan, X. Liu, Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chem. Eng. J. 420, 129864 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Shanghai Natural Science Foundation (20ZR1405000), the exploratory research project of “Yiwu Research Institute of Fudan University” and “Zhongshan Fudan Joint Innovation Center,” the basic research program (No. TC2021JC02) of Taicang Science and Technology Commission Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XZ, NRV. The first draft of the manuscript was written by XZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Noira Vokhidova or Yinxiang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Vokhidova, N., Wang, Q. et al. Effect of morphology and content of Ni nanoparticles on electromagnetic shielding coatings with salt resistance and heating performance. J Mater Sci: Mater Electron 33, 24367–24380 (2022). https://doi.org/10.1007/s10854-022-09155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09155-z

Navigation