Skip to main content
Log in

Flower-like ZnO/BiOI p–n heterojunction composites for enhanced photodegradation of formaldehyde and dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fabrication of p–n heterojunctions was considered as a promising strategy to improve the photocatalytic efficiency of the catalyst, because such junction can effectively promote separation of carriers and improve the catalytic performance. Herein, nanoflower like p–n heterojunction photocatalyst ZnO/BiOI (abbreviated as ZB-x) was prepared by simple solution coprecipitation. Under visible light, ZnO/BiOI p–n heterojunction photocatalyst showed enhanced degradation rate toward Rhodamine B (RhB) and formaldehyde (HCHO) photodegradation. The degradation rates of RhB and HCHO by optimized complex ZB-0.5 in 60 min were 95% and 60%, respectively. The p-type BiOI with narrow band gap can effectively enhance the visible light absorption, and its p–n heterojunction with ZnO can significantly improve the separation efficiency and transfer rate of photogenerated electron hole pairs. Meanwhile, multi-dimensional nanoflower structure is not only conducive to light reflection and improve light utilization, but also can expose more catalytic active sites. This p–n heterojunction nanocomposite has a good effect on improving environmental pollution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Experimental data for this study can be obtained from the authors on reasonable request.

References

  1. X. Ma, K.Y. Chen, B. Niu, Y. Li, L. Wang, J.W. Huang, H.D. She, Q.Z. Wang, Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight. Chin. J. Catal. 41, 1535–1543 (2020). https://doi.org/10.1016/s1872-2067(19)63486-8

    Article  CAS  Google Scholar 

  2. J. Wang, R.H. Li, Z.H. Zhang, W. Sun, Y.P. Xie, R. Xu, Z.Q. Xing, X.D. Zhang, Solar photocatalytic degradation of dye wastewater in the presence of heat-treated anatase TiO2 powder. Environ. Prog. 27, 242–249 (2008). https://doi.org/10.1002/ep.10256

    Article  CAS  Google Scholar 

  3. C. Galinado, P. Jacques, A. Kalt, Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45, 997–1005 (2001). https://doi.org/10.1016/s0045-6535(01)00118-7

    Article  Google Scholar 

  4. M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J. Catal. 201, 46–59 (2001). https://doi.org/10.1006/jcat.2001.3232

    Article  CAS  Google Scholar 

  5. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 39, 75–90 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  6. H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432–22439 (2005). https://doi.org/10.1021/jp052995j

    Article  CAS  Google Scholar 

  7. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater. 136, 85–94 (2005). https://doi.org/10.1016/j.jhazmat.2005.11.017

    Article  CAS  Google Scholar 

  8. X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  9. C. He, D. Shu, Y. Xiong, X.H. Zhu, X.Z. Li, Comparison of catalytic activity of two platinised TiO2 films towards the oxidation of organic pollutants. Chemosphere 63, 183–191 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.048

    Article  CAS  Google Scholar 

  10. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Poura, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018). https://doi.org/10.1016/j.jiec.2018.01.012

    Article  CAS  Google Scholar 

  11. M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit. Rev. Environ. Sci. Technol. 48, 806–857 (2018). https://doi.org/10.1080/10643389.2018.1487227

    Article  CAS  Google Scholar 

  12. M.A.M. Adnan, N.M. Julkapli, S.B.A. Hamid, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36, 77–104 (2016). https://doi.org/10.1515/revic-2015-0015

    Article  CAS  Google Scholar 

  13. S.B.A. Hamid, S.J. Teh, C.W. Lai, Photocatalytic water oxidation on ZnO: a review. Catalysts 7, 93 (2017). https://doi.org/10.3390/catal7030093

    Article  CAS  Google Scholar 

  14. X.D. Zhang, Y.X. Wang, H.Y. Hou, H.X. Li, Y. Yang, Y. Zhang, Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 391, 476–483 (2017). https://doi.org/10.1016/j.apsusc.2016.06.109

    Article  CAS  Google Scholar 

  15. H. Osman, Z. Su, X.L. Ma, S.S. Liu, X.Y. Liu, D. Abduwayit, Synthesis of ZnO/C nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42, 10237–10241 (2016). https://doi.org/10.1016/j.ceramint.2016.03.147

    Article  CAS  Google Scholar 

  16. W.L. Zhang, Y.G. Sun, Z.Y. Xiao, W.Y. Li, B. Li, X.J. Huang, Heterostructures of CuS nanoparticle/ZnO nanorod arrays on carbon fibers with improved visible and solar light photocatalytic properties. J. Mater. Chem. A 3, 7304–7313 (2015). https://doi.org/10.1039/C5TA00560D

    Article  CAS  Google Scholar 

  17. C.L. Yu, W.Z. Zhou, H. Liu, Y. Liu, D.D. Dionysiou, Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion. Chem. Eng. J. 287, 117–129 (2016). https://doi.org/10.1016/j.cej.2015.10.112

    Article  CAS  Google Scholar 

  18. S. Ghosh, D. Rashmi, S. Bera, R.N. Basu, Functionalized conjugated polymer with plasmonic Au nanoalloy for photocatalytic hydrogen generation under visible-NIR. Int. J. Hydrogen Energy 44, 13262–13272 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.189

    Article  CAS  Google Scholar 

  19. S. Bera, S. Ghosh, R.N. Basu, Fabrication of Bi2S3/ZnO heterostructures: an excellent photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties. New J. Chem. 42, 541–554 (2018). https://doi.org/10.1039/c7nj03424e

    Article  CAS  Google Scholar 

  20. S. Sardar, P. Kar, H. Remita, B. Liu, P. Lemmens, S.K. Pal, S. Ghosh, Enhanced charge separation and FRET at heterojunctions between semiconductor nanoparticles and conducting polymer nanofibers for efficient solar light harvesting. Sci. Rep. 5, 17313 (2015). https://doi.org/10.1038/srep17313

    Article  CAS  Google Scholar 

  21. S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015). https://doi.org/10.1039/C4RA13299H

    Article  CAS  Google Scholar 

  22. R.M. Hewlett, M.A. McLachlan, Surface structure modification of ZnO and the impact on electronic properties. Adv. Mater. 28, 3893–3921 (2016). https://doi.org/10.1002/adma.201503404

    Article  CAS  Google Scholar 

  23. S. Sardar, S.K. Pal, Ultrafast photoinduced carrier dynamics at ZnO nanohybrid interfaces for light-harvesting applications. Nanotechnol. Rev. 5, 113–134 (2016). https://doi.org/10.1515/ntrev-2015-0053

    Article  CAS  Google Scholar 

  24. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  25. J.J. Li, Z.W. Zhao, Z.N. Li, H.J. Yang, S.J. Yue, Y.P. Tang, Q.Z. Wang, Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics. Chin. Chem. Lett. 33, 3705–3708 (2022). https://doi.org/10.1016/J.CCLET.2021.10.080

    Article  CAS  Google Scholar 

  26. X.Q. Gu, C.Y. Li, S. Yuan, M. Ma, Y.H. Qiang, J.F. Zhu, ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology 27, 402001–402022 (2016). https://doi.org/10.1088/0957-4484/27/40/402001

    Article  CAS  Google Scholar 

  27. Y.H. Yan, H.Y. Guan, S. Liu, R.Y. Jiang, Ag3PO4/Fe2O3 composite photocatalysts with an n–n heterojunction semiconductor structure under visible-light irradiation. Ceram. Int. 40, 9095–9100 (2014). https://doi.org/10.1016/j.ceramint.2014.01.123

    Article  CAS  Google Scholar 

  28. S. Feizpoor, A. Habibi-Yangjeh, S. Vadivel, Novel TiO2/Ag2CrO4 nanocomposites: efficient visible-light-driven photocatalysts with n–n heterojunctions. J. Photochem. Photobiol. A 341, 57–68 (2017). https://doi.org/10.1016/j.jphotochem.2017.03.028

    Article  CAS  Google Scholar 

  29. X.J. Zou, Y.Y. Dong, X.D. Zhang, Y.B. Cui, X.X. Ou, X.H. Qi, The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO4/BiOBr p–n heterojunction composites. Appl. Surf. Sci. 391, 525–534 (2017). https://doi.org/10.1016/j.apsusc.2016.06.003

    Article  CAS  Google Scholar 

  30. L. Wang, X.L. Ma, G.F. Huang, R. Lian, J.W. Huang, H.D. She, Q.Z. Wang, Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight. J. Environ. Sci. 112, 59–70 (2022). https://doi.org/10.1016/j.jes.2021.04.026

    Article  Google Scholar 

  31. J. Li, Y. Yu, L.Z. Zhang, Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014). https://doi.org/10.1039/c4nr02553a

    Article  CAS  Google Scholar 

  32. L.Q. Ye, J.N. Chen, L.H. Tian, J.Y. Liu, T.Y. Peng, K.J. Deng, L. Zan, BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Appl. Catal. B 130, 1–7 (2013). https://doi.org/10.1016/j.apcatb.2012.10.011

    Article  CAS  Google Scholar 

  33. S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, Synthesis of novel p–n-p BiOBr/ZnO/BiOI heterostructures and their efficient photocatalytic performances in removals of dye pollutants under visible light. J. Photochem. Photobiol. A 389, 112247 (2019). https://doi.org/10.1016/j.jphotochem.2019.112247

    Article  CAS  Google Scholar 

  34. J. Jang, X. Zhang, P.B. Sun, L.Z. Zhang, ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 115, 20555–20564 (2011). https://doi.org/10.1021/jp205925z

    Article  CAS  Google Scholar 

  35. C.J. Zhang, W.H. Fei, H.Q. Wang, N.J. Li, D.Y. Chen, Q.F. Xu, H. Li, J.H. He, J.M. Lu, p–n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J. Hazard. Mater. 399, 123109–123109 (2020). https://doi.org/10.1016/j.jhazmat.2020.123109

    Article  CAS  Google Scholar 

  36. W. Li, Q. Ma, X. Wang, S.A. He, M. Li, L.F. Ren, Hydrogen evolution by catalyzing water splitting on two-dimensional g-C3N4-Ag/AgBr heterostructure. Appl. Surf. Sci. 494, 275–284 (2019). https://doi.org/10.1016/j.apsusc.2019.07.152

    Article  CAS  Google Scholar 

  37. W.S. Xiao, Y. Su, J. Luo, L. Jiang, X.J. Wu, Z.P. Liu, H.J. Pang, Q.L. Zhang, P. Zhang, Flower-like hierarchical architecture of BiOI/ZnO p–n junction composites with high-efficient visible-light photodegradation activities. Solid State Sci. 108, 106432 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106432

    Article  CAS  Google Scholar 

  38. P.Y. Kuang, J.R. Ran, Z.Q. Liu, H.J. Wang, N. Li, Y.Z. Su, Y.G. Jin, S.Z. Qiao, Enhanced photoelectrocatalytic activity of BiOI nanoplate-zinc oxide nanorod p–n heterojunction. Chemistry A 21, 15360–15368 (2015). https://doi.org/10.1002/chem.201501183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Jilin Province (Grant No. 20210101138JC); Science and technology research project of Jilin Provincial Department of Education (Grant No. JJKH20220264KJ); Jilin Jianzhu University Scientific Research startup fund; Innovation and entrepreneurship training program for college students of Jilin Jianzhu University (Grant No. s202110191056).

Funding

Funding was provided by Natural Science Foundation of Jilin Province (Grant No. 20210101138JC), Science and technology research project of Jilin Provincial Department of Education (Grant No. JJKH20220264KJ), Innovation and entrepreneurship training program for college students of Jilin Jianzhu University (Grant No. s202110191056), Jilin Scientific and Technological Development Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, material detection and characterization, data analysis and data processing were carried out by GY and KW. The first draft of the manuscript was written by KW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Yan.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest.

Ethical approval

Not applicable.

Research involved in human and animal rights

This work does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Wang, K., Jiang, Z. et al. Flower-like ZnO/BiOI p–n heterojunction composites for enhanced photodegradation of formaldehyde and dyes. J Mater Sci: Mater Electron 33, 23064–23074 (2022). https://doi.org/10.1007/s10854-022-09073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09073-0

Navigation