Skip to main content
Log in

TD-DFT and optical properties of 9,9-dioctyl-9Hfluorene-based oligomer in a thin film and design of DFB laser using ellipsometry studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

9,9-dioctyl-9H-fluorene (9DOF) is one of the most important molecule structures with unique photophysical properties. We investigated the Time-Dependent Density Functional Theory (TD-DFT), optical, morphological, ellipsometry, and laser characteristics of an oligomer 9,9,9′,9′,9″,9″-hexakis(octyl)-2,7′,2′,7″-trifluorene (9HOTF) with 9DOF as the core structure. The molecules were subjected to toluene cavitation for the TD-DFT studies, which showed that the high oscillator strength (ε) of the oligomer is 2.714 at 350 nm. The absorption spectra of the oligomer films were redshifted to different degrees compared to the solution, indicating the formation of a self-ordered β-phase. Oligomer films showed that β-phase aggregation increases with time and heating–cooling cycles; and influences the absorption and emission spectra. The computational studies of optical properties of 9HOTF were studied using Gaussian 06 software. Variable-angle spectroscopic ellipsometry (VASE) showed an excellent fitting for an extensive range of wavelengths, indicating that the calculated refractive index of the oligomer is very reliable. Optical parameters of the oligomer, such as bandgap, refractive index, and extinction coefficient, were also calculated. The oligomer produced intense amplified spontaneous emission (ASE) at 420 nm (fresh film) and 412 ± 2 nm (film after a day), attributed to the emission S0-1 vibration band with a full-width half-maximum (FWHM) of approximately 7 nm, when pumped using 355 nm, 5 ns Nd: YAG laser. Using the calculated refractive index, the distributed feedback (DFB) Bragg length (Λeff) was estimated to be 550 nm for n = 4. Holographic reflection grating with Λeff = 500 nm and 555 nm were selected, and 9HOTF was dropped and spin-coated to form optically pumped DFB lasers. The FWHM of the designed lasers were 1.0 ± 0.2 nm and 1.0 ± 0.2 nm, centered at 429 nm and 464 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data is available with the corresponding author for realistic requests.

References

  1. Y.-C. Chen, C.-Y. Yu, Y.-L. Fan, L.-I. Hung, C.-P. Chen, C. Ting, Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chem. Commun. 46, 6503–6505 (2010)

    Article  CAS  Google Scholar 

  2. S. Prasad, M.J. Aljaafreh, M.S. AlSalhi, Estimation of optical properties and design of a flexible tunable laser from a green conjugated copolymer. J. Lumin. (2021). https://doi.org/10.1016/j.jlumin.2021.118721

    Article  Google Scholar 

  3. G. Tzamalis, X. Crispin, M. Andersson, M. Berggren, Electrochemical control of amplified spontaneous emission in conjugated polymers. Org. Electron. 13, 954–958 (2012). https://doi.org/10.1016/j.orgel.2012.02.013

    Article  CAS  Google Scholar 

  4. S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)

    Article  Google Scholar 

  5. S.-J. Kim, J.-S. Lee, Flexible organic transistor memory devices. Nano Lett. 10, 2884–2890 (2010)

    Article  CAS  Google Scholar 

  6. Y. Jiang, Y.Y. Liu, X. Liu, H. Lin, K. Gao, W.Y. Lai, W. Huang, Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev. 49, 5885–5944 (2020). https://doi.org/10.1039/D0CS00037J

    Article  CAS  Google Scholar 

  7. A.-M. Haughey, B. Guilhabert, A.L. Kanibolotsky, P.J. Skabara, G.A. Burley, M.D. Dawson, N. Laurand, An organic semiconductor laser based on star-shaped truxene-core oligomers for refractive index sensing. Sensors Actuators B Chem. 185, 132–139 (2013)

    Article  CAS  Google Scholar 

  8. F. ur Rehman, M. Tahir, S. Hameed, F. Wahab, F. Aziz, F.A. Khalid, M.N. Khalid, W. Ali, Investigating sensing properties of poly-(dioctylfluorene) based planar sensor. Mater. Sci. Semicond. Process. 39, 355–361 (2015)

    Article  Google Scholar 

  9. C. Zhou, J. Zhao, J. Ye, M. Tange, X. Zhang, W. Xu, K. Zhang, T. Okazaki, Z. Cui, Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer. Carbon N. Y. 108, 372–380 (2016)

    Article  CAS  Google Scholar 

  10. L. Qian, W. Xu, X. Fan, C. Wang, J. Zhang, J. Zhao, Z. Cui, Electrical and photoresponse properties of printed thin-film transistors based on poly (9, 9-dioctylfluorene-co-bithiophene) sorted large-diameter semiconducting carbon nanotubes. J. Phys. Chem. C 117, 18243–18250 (2013)

    Article  CAS  Google Scholar 

  11. M.C. Gwinner, Y. Vaynzof, K.K. Banger, P.K.H. Ho, R.H. Friend, H. Sirringhaus, Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors. Adv. Funct. Mater. 20, 3457–3465 (2010)

    Article  CAS  Google Scholar 

  12. W. Xu, J. Zhao, L. Qian, X. Han, L. Wu, W. Wu, M. Song, L. Zhou, W. Su, C. Wang, Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 6, 1589–1595 (2014)

    Article  CAS  Google Scholar 

  13. D.L. Crossley, L. Urbano, R. Neumann, S. Bourke, J. Jones, L.A. Dailey, M. Green, M.J. Humphries, S.M. King, M.L. Turner, Post-polymerization C-H borylation of donor–acceptor materials gives highly efficient solid state near-infrared emitters for near-IR-OLEDs and effective biological imaging. ACS Appl. Mater. Interfaces 9, 28243–28249 (2017)

    Article  CAS  Google Scholar 

  14. T. Zhang, J. Sun, X. Liao, M. Hou, W. Chen, J. Li, H. Wang, L. Li, Poly (9, 9-dioctylfluorene) based hyperbranched copolymers with three balanced emission colors for solution-processable hybrid white polymer light-emitting devices. Dye. Pigment. 139, 611–618 (2017)

    Article  CAS  Google Scholar 

  15. M. Anni, Dual band amplified spontaneous emission in the blue in Poly (9, 9-dioctylfluorene) thin films with phase separated glassy and β-phases. Opt. Mater. (Amst). 96, 109313 (2019)

    Article  CAS  Google Scholar 

  16. M.J. Aljaafreh, S. Prasad, M.S. AlSalhi, Z.A. Alahmed, M.M. Al-Mogren, Optically pumped intensive light amplification from a blue oligomer. Polyme. (Basel) 11, 1534 (2019)

    Article  CAS  Google Scholar 

  17. Z. Zhu, Y. Bai, H.K.H. Lee, C. Mu, T. Zhang, L. Zhang, J. Wang, H. Yan, S.K. So, S. Yang, Polyfluorene derivatives are high-performance organic hole-transporting materials for inorganic− organic hybrid perovskite solar cells. Adv. Funct. Mater. 24, 7357–7365 (2014)

    Article  CAS  Google Scholar 

  18. Z. Xu, B. Hu, Photovoltaic processes of singlet and triplet excited states in organic solar cells. Adv. Funct. Mater. 18, 2611–2617 (2008)

    Article  CAS  Google Scholar 

  19. Z. Jiang, Z. Liu, C. Yang, C. Zhong, J. Qin, G. Yu, Y. Liu, Multifunctional fluorene-based oligomers with novel spiro-annulated triarylamine: Efficient, stable deep-blue electroluminescence, good hole injection, and transporting materials with very high Tg. Adv. Funct. Mater. 19, 3987–3995 (2009)

    Article  CAS  Google Scholar 

  20. T. Virgili, M. Anni, M.L. De Giorgi, R.B. Varillas, B.M. Squeo, M. Pasini, Deep blue light amplification from a novel triphenylamine functionalized fluorene thin film. Molecules 25, 1–11 (2020). https://doi.org/10.3390/molecules25010079

    Article  CAS  Google Scholar 

  21. B. Liu, J. Lin, F. Liu, M. Yu, X. Zhang, R. Xia, T. Yang, Y. Fang, L. Xie, W. Huang, A highly crystalline and wide-bandgap polydiarylfluorene with β-phase conformation toward stable electroluminescence and dual amplified spontaneous emission. ACS Appl. Mater. Interfaces 8, 21648–21655 (2016). https://doi.org/10.1021/acsami.6b05247

    Article  CAS  Google Scholar 

  22. C. Rothe, F. Galbrecht, U. Scherf, A. Monkman, The β-phase of poly (9, 9-dioctylfluorene) as a potential system for electrically pumped organic lasing. Adv. Mater. 18, 2137–2140 (2006)

    Article  CAS  Google Scholar 

  23. C.-Y. Huang, T.-S. Huang, C.-Y. Cheng, Y.-C. Chen, C.-T. Wan, M.V.M. Rao, Y.-K. Su, Three-Band white light-emitting diodes based on hybridization of polyfluorene and colloidal CdSe–ZnS quantum dots. IEEE Photonics Technol. Lett. 22, 305–307 (2010)

    Article  CAS  Google Scholar 

  24. Q. Jiang, S. Zhen, D. Mo, K. Lin, S. Ming, Z. Wang, C. Liu, J. Xu, Y. Yao, X. Duan, Design and synthesis of 9, 9-dioctyl-9H-fluorene based electrochromic polymers. J. Polym. Sci. Part A Polym. Chem. 54, 325–334 (2016)

    Article  CAS  Google Scholar 

  25. M. Wei, A. Ruseckas, V.T.N. Mai, A. Shukla, I. Allison, S. Lo, E.B. Namdas, G.A. Turnbull, I.D.W. Samuel, Low threshold room temperature polariton lasing from fluorene-based oligomers. Laser Photon. Rev. (2021). https://doi.org/10.1016/j.synthmet.2005.01.031

    Article  Google Scholar 

  26. M. Campoy-Quiles, P.G. Etchegoin, D.D.C. Bradley, Exploring the potential of ellipsometry for the characterisation of electronic, optical, morphologic and thermodynamic properties of polyfluorene thin films. Synth. Met. 155, 279–282 (2005)

    Article  CAS  Google Scholar 

  27. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian 16, Revision C. 01. Gaussian, Inc., Wallingford CT. 2016. Google Sch. There is no Corresp. Rec. this Ref. 2020.

  28. K. Haraźna, E. Cichoń, S. Skibiński, T. Witko, D. Solarz, I. Kwiecień, E. Marcello, M. Zimowska, R. Socha, E. Szefer, Physicochemical and biological characterisation of diclofenac oligomeric poly (3-hydroxyoctanoate) hybrids as β-TCP ceramics modifiers for bone tissue regeneration. Int. J. Mol. Sci. 21, 9452 (2020)

    Article  Google Scholar 

  29. M.-N. Yu, H. Soleimaninejad, J.-Y. Lin, Z.-Y. Zuo, B. Liu, Y.-F. Bo, L.-B. Bai, Y.-M. Han, T.A. Smith, M. Xu, Photophysical and fluorescence anisotropic behavior of polyfluorene β-conformation films. J. Phys. Chem. Lett. 9, 364–372 (2018)

    Article  Google Scholar 

  30. T.M. McCormick, C.R. Bridges, E.I. Carrera, P.M. Dicarmine, G.L. Gibson, J. Hollinger, L.M. Kozycz, D.S. Seferos, Conjugated polymers: Evaluating DFT methods for more accurate orbital energy modeling. Macromolecules 46, 3879–3886 (2013)

    Article  CAS  Google Scholar 

  31. A. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  32. M. Shkir, Investigation on the key features of L-Histidinium 2-nitrobenzoate (LH2NB) for optoelectronic applications: a comparative study. J. King Saud Univ. 29, 70–83 (2017)

    Article  Google Scholar 

  33. M. Saranya, S. Ayyappan, R. Nithya, R.K. Sangeetha, A. Gokila, Molecular structure, NBO and HOMO-LUMO analysis of quercetin on single layer graphene by density functional theory. Dig. J. Nanomater. Biostructures 13, 97–105 (2018)

    Google Scholar 

  34. R.G. Parr, L.V. Szentpály, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  35. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, Electronegativity: The density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)

    Article  CAS  Google Scholar 

  36. M. Khalid, A. Ali, R. Jawaria, M.A. Asghar, S. Asim, M.U. Khan, R. Hussain, M. Fayyaz ur Rehman, C.J. Ennis, M.S. Akram, First principles study of electronic and nonlinear optical properties of configured compounds containing novel quinoline–carbazole derivatives. RSC Adv. 10, 22273–22283 (2020). https://doi.org/10.1039/D0RA02857F

    Article  CAS  Google Scholar 

  37. M.J. Winokur, J. Slinker, D.L. Huber, Structure, photophysics, and the order-disorder transition to the β phase in poly (9, 9-(di-n, n-octyl) fluorene). Phys. Rev. B 67, 184106 (2003)

    Article  Google Scholar 

  38. N.N. Asemi, M.J. Aljaafreh, S. Prasad, S. Aldawood, M.S. AlSalhi, O. Aldaghri, Efficient liquid scintillator loaded with a light-emitting conjugated oligomer for beta-and gamma-ray spectroscopic measurements. Radiat. Meas. (2022). https://doi.org/10.1016/j.radmeas.2022.106826

    Article  Google Scholar 

  39. I. Sen, D. Penumadu, M. Williamson, L.F. Miller, A.D. Green, A.N. Mabe, Thermal neutron scintillator detectors based on poly (2-Vinylnaphthalene) composite films. IEEE Trans. Nucl. Sci. 58, 1386–1393 (2011). https://doi.org/10.1109/TNS.2011.2141149

    Article  CAS  Google Scholar 

  40. X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Refractive index and extinction coefficient of CH 3 NH 3 PbI 3 studied by spectroscopic ellipsometry. Opt. Mater. Express 5, 29–43 (2015)

    Article  Google Scholar 

  41. C. Howlader, M. Hasan, A. Zakhidov, M.Y. Chen, Determining the refractive index and the dielectric constant of PPDT2FBT thin film using spectroscopic ellipsometry. Opt. Mater. (Amst). 110, 110445 (2020)

    Article  CAS  Google Scholar 

  42. S. Prasad, M.J. Aljaafreh, M.S. AlSalhi, A. Alshammari, Encapsulated passivation of perovskite quantum dot (CsPbBr 3) using a hot-melt adhesive (EVA-TPR) for enhanced optical stability and efficiency. Curr. Comput.-Aided Drug Des. 11, 419 (2021)

    CAS  Google Scholar 

  43. A. Dahshan, K.A. Aly, Determination of the thickness and optical constants of amorphous Ge–Se–Bi thin films. Philos. Mag. 89, 1005–1016 (2009). https://doi.org/10.1080/14786430902835644

    Article  CAS  Google Scholar 

  44. H. Fritzsche, The origin of reversible and irreversible photostructural changes in chalcogenide glasses. Philos. Mag. B 68, 561–572 (1993)

    Article  CAS  Google Scholar 

  45. R.M.A. Azzam, N.M. Bashara, S.S. Ballard, Ellipsometry and polarized light. Phys. Today 31, 72 (1978)

    Article  Google Scholar 

  46. J. Humlíček, Polarized light and ellipsometry, in Polarized light and Ellipsometry. (Handbook of Ellipsometry, Elsevier, 2005)

    Google Scholar 

  47. H. Fujiwara, R.W. Collins, Spectroscopic ellipsometry for photovoltaics, in Fundamental principles and solar cell characterization, vol. 1, (Springer, Cham, 2018), pp.1–16

    Google Scholar 

  48. A.J. Santos, B. Lacroix, E. Blanco, S. Hurand, V.J. Gómez, F. Paumier, T. Girardeau, D.L. Huffaker, R. García, F.M. Morales, Simultaneous optical and electrical characterization of GaN nanowire arrays by means of vis-IR spectroscopic ellipsometry. J. Phys. Chem. C 124, 1535–1543 (2019)

    Article  Google Scholar 

  49. M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, A. Avellán-Hampe, Optical characterization and modeling of Cu(In, Ga)(Se, S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation. Thin Solid Films 535, 331–335 (2013). https://doi.org/10.1016/j.tsf.2012.11.078

    Article  CAS  Google Scholar 

  50. E. Márquez, E. Blanco, C. García-Vázquez, J.M. Díaz, E. Saugar, Spectroscopic ellipsometry study of non-hydrogenated fully amorphous silicon films deposited by room-temperature radio-frequency magnetron sputtering on glass: Influence of the argon pressure. J. Non. Cryst. Solids 547, 120305 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120305

    Article  CAS  Google Scholar 

  51. R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, K. Aiempanakit, Determination of Optical and Physical Properties of ZrO2 Films by Spectroscopic Ellipsometry. Procedia Eng. 32, 745–751 (2012). https://doi.org/10.1016/j.proeng.2012.02.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Vice Deanship of Scientific Research Chairs, Deanship of Scientific Research, King Saud University.

Funding

Funding was supported by Vice Deanship of Scientific Research Chairs, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MJA, SP, and MSA; methodology MJA, SP, and MSA; software, MJA, SP, and MMO; formal analysis, MJA, SP, MAT and MMO; investigation, MJA, OA and SP; resources, MSA, MJA, SP; writing—original draft preparation, MJA, and SP; writing—review and editing MJA, SP, OA and MSA; supervision, MSA; funding acquisition, MSA All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Saradh Prasad or Mohamad S. AlSalhi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1987 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljaafreh, M.J., Osman, M.M., Prasad, S. et al. TD-DFT and optical properties of 9,9-dioctyl-9Hfluorene-based oligomer in a thin film and design of DFB laser using ellipsometry studies. J Mater Sci: Mater Electron 33, 22913–22925 (2022). https://doi.org/10.1007/s10854-022-09060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09060-5

Navigation