Skip to main content
Log in

Electrical characteristics of lead-free Mn-doped BiFeO3–SrTiO3 thin films deposited on silicon substrate using pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free 0.4(BiFe0.995Mn0.005O3)–0.6(SrTiO3) thin films were deposited on boron-doped silicon (p-Si) through pulsed laser deposition. The effect of different deposition pressures ranging from 4.66 × 10− 5 to 13.33 Pa was evaluated, with a corresponding deposition temperature of 700 °C. A conventional lithography process was used to define vertical metal–insulator–metal structures, and the electrical characteristics of these structures were evaluated. The results revealed that as the densification is improved, the leakage current is enhanced and the dielectric constant decreased with the decrease in thickness and increase in deposition pressure. The curve of the current density as a function of the applied electric field exhibited a rectifying effect, with a difference of nearly two orders of magnitude in the current with a forward bias compared to that with a reverse bias. The leakage current mechanisms in metal–ferroelectric–semiconductor structures were investigated as well. The main electrode-limited conduction mechanisms were Schottky emission and Fowler–Nordheim tunneling; the bulk-limited mechanisms were ohmic conduction under low applied electric fields and space charge-limited conduction (SCLC) under high electric fields. The SCLC model was used to calculate the total trap-state density (Nt) at room temperature; Nt was higher in the films deposited under higher pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. Y. Li, K. Yao, G.S. Samudra, IEEE Trans. Electron. Dev. (2017). https://doi.org/10.1109/TED.2017.2674020

    Article  Google Scholar 

  2. E. Aksel, J.L. Jones, Sensors (2010). https://doi.org/10.3390/s100301935

  3. M.D. Nguyen, E.P. Houwman, G. Rijnders, J. Phys. Chem. C, (2018), https://doi.org/10.1021/acs.jpcc.8b04251

    Article  Google Scholar 

  4. X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Appl. Phys. Lett., (2013), https://doi.org/10.1063/1.4802794

    Article  Google Scholar 

  5. X. Wang, L. Zhang, X. Hao, S. An, B. Song, J. Mater. Sci. -Mater Electron., (2015), https://doi.org/10.1007/s10854-015-3621-z

    Article  Google Scholar 

  6. P.K. Panda, J. Mater. Sci., (2009), https://doi.org/10.1007/s10853-009-3643-0

    Article  Google Scholar 

  7. Z. Chen et al., J. Appl. Phys., (2013), https://doi.org/10.1063/1.4804144

    Article  Google Scholar 

  8. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 1 (1982)

    Google Scholar 

  9. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett., (2004), https://doi.org/10.1063/1.1667612

    Article  Google Scholar 

  10. O. García-Zaldívar et al., J. Adv. Dielectr., (2015), https://doi.org/10.1142/S2010135X15500344

    Article  Google Scholar 

  11. Y. Saad, I. Álvarez-Serrano, M.L. López, M. Hidouri, Ceram. Int., (2016), https://doi.org/10.1016/j.ceramint.2016.02.028

    Article  Google Scholar 

  12. S. Cho et al., Chem. Mat., (2015), https://doi.org/10.1021/acs.chemmater.5b02394

    Article  Google Scholar 

  13. N. Itoh, T. Shimura, W. Sakamoto, T. Yogo, J. Ceram. Soc. Jpn, (2009), https://doi.org/10.2109/jcersj2.117.939

    Article  Google Scholar 

  14. J. Ma et al., Nat. Commun., (2018), https://doi.org/10.1038/s41467-018-04189-6

    Article  Google Scholar 

  15. H. Pan et al., J. Mater. Chem. A, (2017), https://doi.org/10.1039/c7ta00665a

    Article  Google Scholar 

  16. C. Yang et al., J. Materiomics, (2020), https://doi.org/10.1016/j.jmat.2020.01.010

    Article  Google Scholar 

  17. G.W. Dietz, W. Antpöhler, M. Klee, R. Waser, J. Appl. Phys. 78, 6113 (1995). https://doi.org/10.1063/1.360553

    Article  CAS  Google Scholar 

  18. J.H. Ma, X.J. Meng, T. Lin, S.J. Liu, J.L. Sun, J.H. Chu, Integr. Ferroelectr. 74(1), 189–197 (2005). https://doi.org/10.1080/10584580500414242

    Article  CAS  Google Scholar 

  19. P. Singh, P.K. Rout, H. Pandey, A. Dogra, J. Mater. Sci. 53(7), 4806–4813 (2018). https://doi.org/10.1007/s10853-017-1916-6

    Article  CAS  Google Scholar 

  20. M.P. Warusawithana et al., Science, (2009), https://doi.org/10.1126/science.1169678

    Article  Google Scholar 

  21. L. Yin, W. Mi, Nanoscale (2020). https://doi.org/10.1039/c9nr08800h

    Article  Google Scholar 

  22. V.K. Dwivedi, Mater. Today (2018). https://doi.org/10.1016/j.matpr.2017.10.032

    Article  Google Scholar 

  23. T. Kalkur, G. Argos, L. Kammerdiner, Mater. Res. Soc. Symp. Proc. (1990). https://doi.org/10.1557/PROC-200-313

  24. N.H. Patel, M. Shah, D.D. Shah, P.K. Mehta, Mater. Today, (2020), https://doi.org/10.1016/j.matpr.2020.10.173

    Article  Google Scholar 

  25. M. Makarovic, A. Bencan, J. Walker, B. Malic, T. Rojac, J. Eur. Ceram. Soc., (2019), https://doi.org/10.1016/j.jeurceramsoc.2019.04.044

    Article  Google Scholar 

  26. H. Liu, X. Yang, Ferroelectrics (2016). https://doi.org/10.1080/00150193.2016.1230445

  27. M. Stafe, A. Marcu, N. Puscas, Pulsed Laser Ablation of Solids, Springer Series in Surface Sciences, 1st edn. (Springer, Berlin, 2014), pp. 15–51

    Google Scholar 

  28. T.M. Doan, L. Lu, M.O. Lai, J. Phys. D-Appl Phys., (2010), https://doi.org/10.1088/0022-3727/43/3/035402

    Article  Google Scholar 

  29. X. Tang et al., J. Am. Ceram. Soc. (2012), https://doi.org/10.1111/j.1551-2916.2011.04920.x

    Article  Google Scholar 

  30. G. Biasotto, F. Moura, C. Foschini, E. Longo, J.A. Varela, A.Z. Simões, Process. Appl. Ceram., (2011), https://doi.org/10.2298/PAC1101031B

    Article  Google Scholar 

  31. Gang Liu and Ce-Wen Nan, Thickness dependence of polarization in ferroelectric perovskite thin films. J. Phys. D: Appl. Phys. 38, 584–589 (2005). https://doi.org/10.1088/0022-3727/38/4/010

    Article  CAS  Google Scholar 

  32. Y. Wang, W. Chen, B. Wang, Y. Zheng, Materials 7, 6377–6485 (2014). https://doi.org/10.3390/ma7096377

    Article  CAS  Google Scholar 

  33. M.M. Saad et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, (2006), https://doi.org/10.1109/TUFFC.2006.168

    Article  Google Scholar 

  34. Y. Bastani, T. Schmitz-Kempen, A. Roelofs, N. Bassiri-Gharb, Jpn J. Appl. Phys., (2011), https://doi.org/10.1063/1.3527970

    Article  Google Scholar 

  35. Q. Yang, J. Cao, Y. Zhou, L. Sun, X. Lou, Acta Mater., (2016), https://doi.org/10.1016/j.actamat.2016.04.036

    Article  Google Scholar 

  36. Y. Xu, C.J. Chen, R. Xu, J.D. Mackenzie, Mater. Res. Soc. Symp. Proc.  (1990)

  37. H. Yang et al., Appl. Phys. Lett., (2008), https://doi.org/10.1063/1.2896302

    Article  Google Scholar 

  38. J.H. Ma, X.J. Meng, T. Lin, S.J. Liu, J.L. Sun, J.H. Chu, Leakage current mechanisms of SrTiO3 thin films with MIS structures. Integr. Ferroelectr. 74(1), 189–197 (2005). https://doi.org/10.1080/10584580500414242

    Article  CAS  Google Scholar 

  39. F.C. Chiu, A review on conduction mechanisms in dielectric films,  Adv. Mater. Sci. Eng.  (2014). https://doi.org/10.1155/2014/578168

  40. G.W. Pabst, L.W. Martin, C. Ying-hao, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007). https://doi.org/10.1063/1.2535663

    Article  CAS  Google Scholar 

  41. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Improved leakage and ferroelectric properties of Mn and Ti codoped thin films. Appl. Phys. Lett. 94, 112904 (2009). https://doi.org/10.1063/1.3098408

    Article  CAS  Google Scholar 

  42. S. Yousfi, H. Bouyanfif, and M. El Marssi. Conduction mechanism in epitaxial BiFe0.95Mn0.05O3 thin film. J. Appl. Phys. 122, 124101 (2017). https://doi.org/10.1063/1.5003248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Projects CB 240460 and LN2021-315906 of CONACYT and Prodep 2018-Cinvestav-CA-17. The authors are grateful for the research support received from the National Laboratory, LIDTRA. J. J. Serralta Macías is grateful to CONACYT for the financial support received through the mixed scholarship program. This study received research support from the University of Texas at Dallas (UTD). The authors also wish to thank the laboratory technicians Rivelino Flores Farias and Martín Adelaido Hernández Landaverde for their support.

Funding

Partial financial support was received from Projects CB 240460 and LN2021-315906 of CONACYT, and Prodep 2018-Cinvestav-CA-17.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [JMY-L, JS-M, MQ, and DO]; Methodology: [JS-M, RR-D, MY-L, MQ, CDY, and SJC]; Formal analysis and investigation: [JS, MY, RR, SJC, and CDY]; Writing and original draft preparation: [JS-M, RR-D, MY-L, DO, and MQ]; Writing and review and editing of the manuscript: [JS-M, RR-D, MY-L, and DO]; Funding acquisition: [JMY-L and JS-M]; Resources: [JM-Y-l, MQ, and CDY]; Supervision: [MY-L, MQ, and DO]. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to J. M. Yáñez-Limón.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serralta-Macías, J.J., Rodriguez-Davila, R.A., Quevedo-Lopez, M. et al. Electrical characteristics of lead-free Mn-doped BiFeO3–SrTiO3 thin films deposited on silicon substrate using pulsed laser deposition. J Mater Sci: Mater Electron 33, 19272–19283 (2022). https://doi.org/10.1007/s10854-022-08765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08765-x

Navigation