Skip to main content

Advertisement

Log in

Flower-shaped BiOI@SnS2 Z-scheme heterojunction for enhancing visible-light-driven photocatalytic performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flower-shaped BiOI@SnS2 nanocomposites were synthesized by the coprecipitation method. The effects of different composite ratios on the chemical composition, microstructure, morphology, optical properties, photoelectric chemical properties and photocatalytic properties of the samples were discussed. And the photocatalytic performance of the samples were evaluated by the photodegradation of Rhodamine B (RhB) in an aqueous solution under the xenon lamp. The experimental results demonstrated that BiOI@SnS2 nanocomposites were three-dimensional nanoflower-like microsphere structures with good crystallization. BiOI@SnS2 nanocomposites can improve visible light absorption due to their larger specific surface area and optimized energy band structure. BiOI@SnS2 heterojunction can effectively broaden the light visible light response range, accelerate the separation of photogenerated carriers and inhibit the recombination of electron-hole pairs. BiOI@SnS2 Z-scheme heterojunction exhibit excellent photocatalytic activity compared with pure BiOI and SnS2 photocatalysts in the degradation of RhB and the photocatalytic degradation rate of BiOI@SnS2-2 reached 76.8% after 90 min. In addition,.O2 and OH as the main active species in the photocatalytic degradation of RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

We state that our manuscript is original, unpublished, all data are true in the original manuscript and it is not considered for publication elsewhere. We would be grateful if our paper could be reviewed and considered for publication in the Journal of Materials Science.

References

  1. M. Arunkumar et al., A novel visible light-driven p-type BiFeO3/n-type SnS2 heterojunction photocatalyst for efficient charge separation and enhanced photocatalytic activity. J. Cluster Sci. (2021). https://doi.org/10.1007/s10876-021-02114-4

    Article  Google Scholar 

  2. J. Gao et al., 2D Z-scheme TiO2/SnS2 heterojunctions with enhanced visible-light photocatalytic performance for refractory contaminants and mechanistic insights. New J. Chem. (2021). https://doi.org/10.1039/d1nj02247d

    Article  Google Scholar 

  3. A. Hassani, S. Krishnan, J. Scaria, P. Eghbali, P.V. Nidheesh, Z-scheme photocatalysts for visible-light-driven pollutants degradation: a review on recent advancements. Curr. Opinion Solid State Mater. Sci. (2021). https://doi.org/10.1016/j.cossms.2021.100941

    Article  Google Scholar 

  4. Y. Lan et al., Visible-light responsive Z-scheme Bi@β-Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123686

    Article  Google Scholar 

  5. T.K.A. Nguyen, T.-T. Pham, B. Gendensuren, E.-S. Oh, E.W. Shin, Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres. J. Mater. Sci. Technol. 103, 232–243 (2022). https://doi.org/10.1016/j.jmst.2021.07.013

    Article  Google Scholar 

  6. F. Shao et al., Promoting photodegradation efficiency via a heterojunction photocatalyst combining with oxygen direct and fast diffusion from the gas phase to active catalytic sites. ACS Appl. Mater. Interf. 11, 44922–44930 (2019). https://doi.org/10.1021/acsami.9b17122

    Article  CAS  Google Scholar 

  7. Y. Shen et al., Novel photocatalytic performance of nanocage-like MIL-125-NH2 induced by adsorption of phenolic pollutants. Environ. Sci. Nano 7, 1525–1538 (2020). https://doi.org/10.1039/d0en00120a

    Article  CAS  Google Scholar 

  8. L.M. Yu et al., Highly conductive and wettable PEDOT:PSS for simple and efficient organic/c-Si planar heterojunction solar cells. Solar RRL (2020). https://doi.org/10.1002/solr.201900513

    Article  Google Scholar 

  9. N. Zhong et al., Intimately coupling photocatalysis with phenolics biodegradation and photosynthesis. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.130666

    Article  Google Scholar 

  10. M. Song et al., Rational design of novel three-dimensional reticulated Ag2O/ZnO Z-scheme heterojunction on Ni foam for promising practical photocatalysis. Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.148519

    Article  Google Scholar 

  11. X.T. Zhu, Y. Xu, Y. Cao, D.F. Zou, W. Sheng, Direct Z-scheme arsenene/HfS2 van der waals heterojunction for overall photocatalytic water splitting: first-principles study. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2021.151650

    Article  Google Scholar 

  12. Y. Yang et al., BiOX (X=Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv. Colloid. Interf. Sci. 254, 76–93 (2018). https://doi.org/10.1016/j.cis.2018.03.004

    Article  CAS  Google Scholar 

  13. C. Zhang et al., p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol a in water. J. Hazard Mater. 399, 123109 (2020). https://doi.org/10.1016/j.jhazmat.2020.123109

    Article  CAS  Google Scholar 

  14. W. Zhao, Z. Wei, X. Zhang, M. Ding, S. Huang, PH-controlled MnFe2O4@SnS2 nanocomposites for the visible-light photo-Fenton degradation. Mater. Res. Bull. (2020). https://doi.org/10.1016/j.materresbull.2019.110749

    Article  Google Scholar 

  15. Z. Li, W. Lv, G. Wu, W. Zhang, Rhombic dodecahedron hetero-structure Zn/Co–Se@C as cathode material for aluminum batteries with excellent electrochemical performance. J. Power Sources (2021). https://doi.org/10.1016/j.jpowsour.2021.230455

    Article  Google Scholar 

  16. Z. Wang et al., Ultrathin BiOX (X = Cl, Br, I) nanosheets with exposed 001 facets for photocatalysis. ACS Appl. Nano Mater. 3, 1981–1991 (2020). https://doi.org/10.1021/acsanm.0c00022

    Article  CAS  Google Scholar 

  17. M.E. Kazyrevich et al., Photocurrent switching effect on platelet-like BiOI electrodes: influence of redox system, light wavelength and thermal treatment. Electrochim. Acta 190, 612–619 (2016). https://doi.org/10.1016/j.electacta.2015.12.229

    Article  CAS  Google Scholar 

  18. Z. Li et al., Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2021.213953

    Article  Google Scholar 

  19. X. Wang et al., Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance. Appl. Catal. B: Environ. (2020). https://doi.org/10.1016/j.apcatb.2019.118390

    Article  Google Scholar 

  20. H. Yang, A short review on heterojunction photocatalysts: carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. (2021). https://doi.org/10.1016/j.materresbull.2021.111406

    Article  Google Scholar 

  21. S. Bera, S. Ghosh, T. Maiyalagan, R.N. Basu, Band edge engineering of BiOX/CuFe2O4 heterostructures for efficient water splitting. ACS Appl. Energy Mater. 5, 3821–3833 (2022). https://doi.org/10.1021/acsaem.2c00296

    Article  CAS  Google Scholar 

  22. H. Jia et al., Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior. Appl. Surf. Sci. 441, 832–840 (2018). https://doi.org/10.1016/j.apsusc.2018.02.030

    Article  CAS  Google Scholar 

  23. H. Wang et al., Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO. Appl. Catal. B 208, 22–34 (2017). https://doi.org/10.1016/j.apcatb.2017.02.055

    Article  CAS  Google Scholar 

  24. H. An et al., Formation of BiOI/g-C3N4 nanosheet composites with high visible-light-driven photocatalytic activity. Chin. J. Catal. 39, 654–663 (2018). https://doi.org/10.1016/s1872-2067(17)62927-9

    Article  CAS  Google Scholar 

  25. Z. Liu et al., Enhanced photocatalytic performance of TiO2 NTs decorated with chrysanthemum-like BiOI nanoflowers. Sep. Purif. Technol. 215, 565–572 (2019). https://doi.org/10.1016/j.seppur.2019.01.046

    Article  CAS  Google Scholar 

  26. Y. Tong et al., ZnO-embedded BiOI hybrid nanoflakes: synthesis, characterization, and improved photocatalytic properties. Mater. Des. 122, 90–101 (2017). https://doi.org/10.1016/j.matdes.2017.02.033

    Article  CAS  Google Scholar 

  27. H. Wang, H. Ye, B. Zhang, F. Zhao, B. Zeng, Electrostatic interaction mechanism based synthesis of a Z-scheme BiOI–CdS photocatalyst for selective and sensitive detection of Cu2+. J. Mater. Chem. A 5, 10599–10608 (2017). https://doi.org/10.1039/c7ta02691a

    Article  CAS  Google Scholar 

  28. W. Chen et al., Recent advances in photoelectrocatalysis for environmental applications: sensing, pollutants removal and microbial inactivation. Coordinat. Chem. Rev. (2022). https://doi.org/10.1016/j.ccr.2021.214341

    Article  Google Scholar 

  29. S.R. Damkale et al., Two-dimensional hexagonal SnS2 nanostructures for photocatalytic hydrogen generation and dye degradation. Sustain. Energy Fuels 3, 3406–3414 (2019). https://doi.org/10.1039/c9se00235a

    Article  CAS  Google Scholar 

  30. J. Wang, Y. Chen, Low temperature in air molten synthesis of flower-like hierarchical structure SnS2 with superior photocatalysis. Coll. Interf. Sci. Commun. (2021). https://doi.org/10.1016/j.colcom.2021.100522

    Article  Google Scholar 

  31. Y. Liu et al., Photocatalytic hydrogen evolution using ternary-metal-sulfide/TiO2 heterojunction photocatalysts. ChemCatChem. (2021). https://doi.org/10.1002/cctc.202101439

    Article  Google Scholar 

  32. Y. Yuan et al., A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater. Today Energy (2021). https://doi.org/10.1016/j.mtener.2021.100829

    Article  Google Scholar 

  33. S. Huang, Z. Wei, M. Ding, C. Li, Q. Lu, Photo-electrochemical and photocatalytic properties of hierarchical flower-like BiOI/CoFe2O4 nanocomposites synthesized by co-precipitation method. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2020.110643

    Article  Google Scholar 

  34. W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, Cr doped SnS2 nanoflowers: preparation, characterization and photocatalytic decolorization. Mater. Sci. Semicond. Process. 88, 173–180 (2018). https://doi.org/10.1016/j.mssp.2018.08.011

    Article  CAS  Google Scholar 

  35. L. Behera, B. Barik, S. Mohapatra, Improved photodegradation and antimicrobial activity of hydrothermally synthesized 0.2Ce-TiO2/RGO under visible light. Coll. Surf. Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2021.126553

    Article  Google Scholar 

  36. H. Xie, B. Liu, X. Zhao, Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation of acetone and benzene. Chem. Eng. J. 284, 1156–1164 (2016). https://doi.org/10.1016/j.cej.2015.09.049

    Article  CAS  Google Scholar 

  37. F. Yang, G. Han, D. Fu, Y. Chang, H. Wang, Improved photodegradation activity of TiO2 via decoration with SnS2 nanoparticles. Mater. Chem. Phys. 140, 398–404 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.055

    Article  CAS  Google Scholar 

  38. T. Wang et al., p-BiOI/n-SnS2 heterojunction flowerlike structure with enhanced visible-light photocatalytic performance. RSC Adv. 5, 15469–15478 (2015). https://doi.org/10.1039/c4ra15770b

    Article  CAS  Google Scholar 

  39. L. Hao et al., Anodized BiOI coatings and their photocatalytic activity of organic dye degradation. Surf. Interfac. (2020). https://doi.org/10.1016/j.surfin.2020.100562

    Article  Google Scholar 

  40. Y. Chen et al., Enhanced photocatalytic performance of TiO2/BiOI heterojunctions benefited from effective separation of photogenerated carriers. Chem. Phys. Lett. (2021). https://doi.org/10.1016/j.cplett.2021.138966

    Article  Google Scholar 

  41. G.X. Yin, S.J. Lv, H.Y. Wang, First principles study of the electronic, elastic and vibrational properties of BiOI. Solid State Commun. (2021). https://doi.org/10.1016/j.ssc.2021.114419

    Article  Google Scholar 

  42. P. Zhang, H. Liang, H. Liu, J. Bai, C. Li, A novel Z-scheme BiOI/BiOCl nanofibers photocatalyst prepared by one-pot solvothermal with efficient visible-light-driven photocatalytic activity. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.125031

    Article  Google Scholar 

  43. M. Dendisova et al., The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: a review. Anal. Chim. Acta. 1031, 1–14 (2018). https://doi.org/10.1016/j.aca.2018.05.046

    Article  CAS  Google Scholar 

  44. P. Mulvaney, W.J. Parak, F. Caruso, P.S. Weiss, Standardizing nanomaterials. ACS Nano. 10, 9763–9764 (2016). https://doi.org/10.1021/acsnano.6b07629

    Article  CAS  Google Scholar 

  45. M. Li et al., Exploring the effects of temperature-driven phase transition on supercapacitive performance of cobalt diselenide. J. Power Sources (2022). https://doi.org/10.1016/j.jpowsour.2022.231683

    Article  Google Scholar 

  46. J.-Y. Ye, Y.-X. Jiang, T. Sheng, S.-G. Sun, In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy 29, 414–427 (2016). https://doi.org/10.1016/j.nanoen.2016.06.023

    Article  CAS  Google Scholar 

  47. B.Y. Chang, S.M. Park, Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. (Palo Alto Calif) 3, 207–229 (2010). https://doi.org/10.1146/annurev.anchem.012809.102211

    Article  CAS  Google Scholar 

  48. S. Effendy, J. Song, M.Z. Bazant, Analysis, design, and generalization of electrochemical impedance spectroscopy (EIS) inversion algorithms. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab9c82

    Article  Google Scholar 

  49. N.O. Laschuk, E.B. Easton, O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 11, 27925–27936 (2021). https://doi.org/10.1039/d1ra03785d

    Article  CAS  Google Scholar 

  50. Y. Chi et al., Evaluation of practical application potential of a photocatalyst: ultimate apparent photocatalytic activity. Chemosphere 285, 131323 (2021). https://doi.org/10.1016/j.chemosphere.2021.131323

    Article  CAS  Google Scholar 

  51. T. Morofuji, G. Ikarashi, N. Kano, Photocatalytic C-H amination of aromatics overcoming redox potential limitations. Org. Lett. 22, 2822–2827 (2020). https://doi.org/10.1021/acs.orglett.0c00822

    Article  CAS  Google Scholar 

  52. Y. Zhao et al., Fabrication of BiOBr nanosheets@TiO2 nanobelts p–n junction photocatalysts for enhanced visible-light activity. Appl. Surf. Sci. 365, 209–217 (2016). https://doi.org/10.1016/j.apsusc.2015.12.249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51261015), Natural Science Foundation of Gansu Province, China (1308RJZA238), and Hong Liu First-Class Disciplines Development Program of Lanzhou University of Technology.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

LL: Responsible for manuscript writing, experimental data preparation and processing. ZW: Responsible for data collation and manuscript writing. SH: Experimental data processing. QL: Consult relevant literature. JM: Check manuscripts and assist in experiments. CL: Consult relevant literature and investigate the feasibility.

Corresponding author

Correspondence to Zhiqiang Wei.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wei, Z., Huang, S. et al. Flower-shaped BiOI@SnS2 Z-scheme heterojunction for enhancing visible-light-driven photocatalytic performances. J Mater Sci: Mater Electron 33, 18884–18896 (2022). https://doi.org/10.1007/s10854-022-08738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08738-0

Navigation