Skip to main content
Log in

Investigation of the room temperature gas-detecting potential of CeO2-doped ZnO at different ratios using clad-modified fiber optic gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The detection of volatile organic compounds (VOCs) in ambient environments has opened up a new field for the quick, risk-free, and potentially low-cost identification of respiratory illnesses. In this context, CeO2-doped ZnO nanocomposites were produced through the sol–gel technique at various ratios (CeO2:ZnO at 1:4, 4:4, and 4:1, respectively), and their gas-sensing capability was evaluated and shown using a clad-modified fiber optic sensor to study its potential as a VOC detector. The study was based on the concepts of evanescent wave absorption. The modified cladded optical fiber was exposed to ammonia, ethanol, and methanol gas medium in the testing laboratory. At room/chamber temperature, the sensor's sensitivity is tested for various ratios and their spectral response was recorded, and was observed that CeO2-doped ZnO at 4:1 ratio exhibited better sensitivity towards ammonia gas vapor, with a sensitivity of 2.6 counts/10 ppm and a sensitivity percentage of about 26% for the maximum of 100 ppm. Thus, the RT ammonia gas-sensing capability of CeO2-doped ZnO (4:1) is well suited to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All authors agree.

References

  1. A.J. Kulandaisamy, V. Elavalagan, P. Shankar, G.K. Mani, K.J. Babu, J.B.B. Rayappan, Nanostructured cerium-doped ZnO thin film—A breath sensor. Ceram. Int. 42, 18289–18295 (2016). https://doi.org/10.1016/J.CERAMINT.2016.08.156

    Article  CAS  Google Scholar 

  2. Y.Y. Broza, R. Vishinkin, O. Barash, M.K. Nakhleh, H. Haick, Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev 47, 4781–4859 (2018). https://doi.org/10.1039/C8CS00317C

    Article  CAS  Google Scholar 

  3. J. Shin, S.J. Choi, I. Lee, D.Y. Youn, C.O. Park, J.H. Lee, H.L. Tuller, I.D. Kim, Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357–2367 (2013). https://doi.org/10.1002/adfm.201202729

    Article  CAS  Google Scholar 

  4. C.E. Dent, J.M. Walshe, Primary carcinoma of the liver: description of a case with ethanolaminuria, a new and obscure metabolic defect. Br. J. Cancer 7, 166–180 (1953). https://doi.org/10.1038/bjc.1953.16

    Article  CAS  Google Scholar 

  5. W.H. Cheng, W.J. Lee, Technology development in breath microanalysis for clinical diagnosis. J. Lab. Clin. Med. 133, 218–228 (1999). https://doi.org/10.1016/S0022-2143(99)90077-X

    Article  CAS  Google Scholar 

  6. B. Renganathan, S.K. Rao, A.R. Ganesan, A. Deepak, High proficient sensing response in clad modified ceria doped tin oxide fiber optic toxic gas sensor application. Sensors Actuators A Phys. 332, 113114 (2021). https://doi.org/10.1016/j.sna.2021.113114

    Article  CAS  Google Scholar 

  7. C. Elosua, I.R. Matias, C. Bariain, F.J. Arregui, Volatile organic compound optical fiber sensors: a review. Sensors 6, 1440–1465 (2006). https://doi.org/10.3390/s6111440

    Article  CAS  Google Scholar 

  8. C. Elosua, C. Bariain, I.R. Matias, F.J. Arregui, A. Luquin, M. Laguna, Volatile alcoholic compounds fiber optic nanosensor. Sens. Actuators B 115, 444–449 (2006). https://doi.org/10.1016/j.snb.2005.10.014

    Article  CAS  Google Scholar 

  9. C. Ge, C. Xie, S. Cai, Prepartion and gas—sensing properties of Ce—doped ZnO thin-film sensors by dip-coating. Mater. Sci. Eng. 137, 53–58 (2007). https://doi.org/10.1016/j.mseb.2006.10.006

    Article  CAS  Google Scholar 

  10. M.F.A. Kuhaili, S.M.A. Durrani, Bakhtiari, Carbon monoxide gas—sensing properties of CeO2-ZnO thin films. Appl. Surf. Sci 255, 3033–3039 (2008). https://doi.org/10.1016/j.apsusc.2008.08.058

    Article  CAS  Google Scholar 

  11. Y. Jiang, N. Bahlawane, Changes in the structural and optical properties of CeO2 nanocrystalline films: Effect of film thickness. J. Alloys and Compounds 485, 152–155 (2009). https://doi.org/10.1016/j.jallcom.2009.06.118

    Article  CAS  Google Scholar 

  12. Z. Jiang, Z. Guo, B. Sun, Y. Jia, M. Li, J. Liu, Highly sensitive and selective butanone sensors based on cerium—doped SnO2 thin films. Sens. Actuators B 145, 667–673 (2010). https://doi.org/10.1016/j.snb.2010.01.014

    Article  CAS  Google Scholar 

  13. A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds(VOCs) by metal oxide nanostructures-based gas sensors: a review. CeramicsInternational 42(14), 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  14. W. Lu, D. Zhu, X. Xiang, Synthesis and properties of Ce-doped ZnO as a sensor for 1,2-propanediol. J Mat Sci Mat Electron 28, 18929–18935 (2017). https://doi.org/10.1007/s10854-017-7846-x

    Article  Google Scholar 

  15. B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, J.H. Hu, Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mat Lett 58(5), 624–629 (2004). https://doi.org/10.1016/S0167-577X(03)00582-2

    Article  CAS  Google Scholar 

  16. M. Morisawa, Y. Amemiya, H. Kohzu, C.X. Liang, S. Muto, Plastic optical fiber sensor for detecting vapour phase alcohol. Meas. Sci. Technol 12, 877–881 (2001). https://doi.org/10.1088/0957-0233/12/7/322

    Article  CAS  Google Scholar 

  17. J. Yuan, M.A. El-Sherif, Fiber-optic chemical sensor using polyaniline as modified cladding material. IEEE Sen J 3, 5–12 (2004). https://doi.org/10.1109/JSEN.2003.809023

    Article  CAS  Google Scholar 

  18. W. Cao, Y. Duan, Optical fiber-based evanescent ammonia, sensor. Sens. Actuators B 110, 252–259 (2005). https://doi.org/10.1016/J.SNB.2005.02.015

    Article  CAS  Google Scholar 

  19. S. Devendiran, D. Sastikumar, Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber. Opt. Laser Technol. 89, 186–191 (2017). https://doi.org/10.1016/j.optlastec.2016.10.013

    Article  CAS  Google Scholar 

  20. S.K. Shukla, C.S. Kushwaha, T. Guner, M.M. Demir, Chemically modified optical fibers in advanced technology: an overview. Opt. Laser Technol. 115, 404–432 (2019). https://doi.org/10.1016/j.optlastec.2019.02.025

    Article  CAS  Google Scholar 

  21. A.K. Sharma, J. Gupta, S. Ishika, Fiber optic evanescent wave absorption-based sensors: a detailed review of advancements in the last decade. Optik 183, 1008–1025 (2019). https://doi.org/10.1016/j.ijleo.2019.02.104

    Article  CAS  Google Scholar 

  22. S.K. Rao, A. Kalai Priya, S. Manjunath Kamath, K. Jeyadheepan, C. Gopalakrishnan, Unraveling the potential of Gd doping on mullite BiFeO for fiber optic ethanol gas detection at room temperature. Mater. Chem. Phys. 278, 125646 (2021). https://doi.org/10.1016/j.matchemphys.2021.125646

    Article  CAS  Google Scholar 

  23. G. Kavitha, J. Vinoth Kumar, R. Arulmozhi, S.M. Kamath, A.K. Priya, K.S. Rao, N. Abirami, 2D graphene supported nickel oxide nano-composite for fiber optic ethanol gas sensing, removal of azo dye, and biological activity. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07470-5

    Article  Google Scholar 

  24. B. Renganathan, D. Sastikumar, G. Gobi, N. Rajeswari Yogamalar, A. Chandra Bose, Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection. Opt. Laser Technol. 43, 1398–1404 (2011). https://doi.org/10.1016/j.optlastec.2011.04.008

    Article  CAS  Google Scholar 

  25. R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano Micro Lett. 2, 65–72 (2012). https://doi.org/10.1007/BF03353694

    Article  Google Scholar 

  26. V. Postica, A. Vahl, D. Santos-Carballal, T. Dankwort, L. Kienle, M. Hoppe, A. Cadi- Essadek, N.H. De Leeuw, M.I. Terasa, R. Adelung, F. Faupel, O. Lupan, Tuning ZnO sensors reactivity toward volatile organic compounds via ag doping and nanoparticle functionalization. ACS Appl. Mater. Interfaces. 11, 31452–31466 (2019). https://doi.org/10.1021/acsami.9b07275

    Article  CAS  Google Scholar 

  27. T. Tsuzuki, R. He, A. Dodd, M. Saunders, Challenges in determining the location of dopants, to study the influence of metal doping on the photocatalytic activities of ZnO nanopowders. Nanomaterials. 9, 1–19 (2019). https://doi.org/10.3390/nano9030481

    Article  CAS  Google Scholar 

  28. D. Zhang, W. Pan, L. Zhou, S. Yu, Room-temperature benzene sensing with au-doped ZnO nanorods/exfoliated WSe2Nanosheets and density functional theory simulations. ACS Appl. Mater. Interfaces. 13, 33392–33403 (2021). https://doi.org/10.1021/acsami.1c03884

    Article  CAS  Google Scholar 

  29. S.K. Singh, D. Dutta, A. Dhar, S. Das, M.C. Paul, T.K. Gangopadhyay, Detection of ammonia gas molecules in aqueous medium by using nanostructured Ag-doped ZnO thin layer deposited on modified clad optical fiber. Phys. Status Solid A 216, 1900141 (2019). https://doi.org/10.1002/pssa.201900141

    Article  CAS  Google Scholar 

  30. A. Kalai Priya, A. Sunny, B. Karthikeyan, D. Sastikumar, Optical, spectroscopic and fiber optic gas sensing of potassium doped α-Fe2O3 nanostructures. Opt Fiber Technol 58, 102304 (2020). https://doi.org/10.1016/j.yofte.2020.102304

    Article  CAS  Google Scholar 

  31. S. Krishnarao, A. Kalai Priya, S. Kamath Manjunath, Unequivocal evidence of enhanced room temperature sensing properties of clad modified Nd doped mullite Bi2Fe4O9 in fiber optic gas sensor. J. Alloys Compd. 838, 155603 (2020). https://doi.org/10.1016/j.jallcom.2020.155603

    Article  CAS  Google Scholar 

  32. X. Ma, Z. Wang, The optical properties of rare earth Gd doped ZnO nanocrystals. Mater. Sci. Semicond. Process. 15, 227–231 (2012). https://doi.org/10.1016/j.mssp.2011.05.013

    Article  CAS  Google Scholar 

  33. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/ n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 2, 2915–2923 (2010). https://doi.org/10.1021/am100618h

    Article  CAS  Google Scholar 

  34. K. Mani Rahulan, T. Sahoo, N. Angeline Little Flower, I. Phebe Kokila, G. Vinitha, R. Annie Sujatha, Effect of Sr2+ doping on the linear and nonlinear optical properties of ZnO nanostructures. Opt. Laser Technol. 109, 313–318 (2019). https://doi.org/10.1016/j.optlastec.2018.08.019

    Article  CAS  Google Scholar 

  35. P. Bharathi, M. Krishna Mohan, V. Shalini, S. Harish, M. Navaneethan, J. Archana, M. Ganesh Kumar, P. Dhivya, S. Ponnusamy, M. Shimomura, Y. Hayakawa, Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 499, 143857 (2020). https://doi.org/10.1016/j.apsusc.2019.143857

    Article  CAS  Google Scholar 

  36. Y.H. Zhang, M.X. Peng, L.J. Yue, J.L. Chen, F.L. Gong, K.F. Xie, S.M. Fang, A room-temperature aniline sensor based on Ce doped ZnO porous nanosheets with abundant oxygen vacancies. J. Alloys Compd. 885, 160988 (2021). https://doi.org/10.1016/j.jallcom.2021.160988

    Article  CAS  Google Scholar 

  37. K. Ackland, J.M.D. Coey, Room temperature magnetism in CeO2—a review. Phys. Rep. 746, 1–39 (2018). https://doi.org/10.1016/j.physrep.2018.04.002

    Article  CAS  Google Scholar 

  38. S. Soni, N. Chouhan, R.K. Meena, S. Kumar, B. Dalela, M. Mishra, R.S. Meena, G. Gupta, S. Kumar, P.A. Alvi, S. Dalela, Electronic structure and room temperature ferromagnetism in Gd-doped cerium oxide nanoparticles for hydrogen generation via photocatalytic water splitting. Glob. Challenges. 3, 1800090 (2019). https://doi.org/10.1002/gch2.201800090

    Article  Google Scholar 

  39. A. Kalai Priya, G.K. Yogesh, K. Subha, V. Kalyanavalli, D. Sastikumar, Synthesis of silver nano-butterfly park by using laser ablation of aqueous salt for gas sensing application. Appl. Phys. A Mater. Sci. Process. 127, 1–12 (2021). https://doi.org/10.1007/s00339-021-04370-7

    Article  CAS  Google Scholar 

Download references

Funding

Dr. S.M.M.S.Maricar and Mr.Noble assisted with characterization and experiments, and one of the authors (B.R.) acknowledges the DST/SERB in New Delhi, India for financial support through the fast track project for young scientists (Letter No.SB/FTP/ETA-99/2013 dated 03.09.2013).

Author information

Authors and Affiliations

Authors

Contributions

BR: Original draft preparation, data validation, Data analysis & interpretation, Fiber optics gas sensor concept and Methodology. SKR: Original draft preparation, data validation,Reviewing and editing & Data validation. ARG: Reviewing. AD: Reviewing and editing, NK: Reviewing and editing.

Corresponding author

Correspondence to B. Renganathan.

Ethics declarations

Competing interest

The authors declare there is “no conflict of interest” that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renganathan, B., Rao, S.K., Ganesan, A.R. et al. Investigation of the room temperature gas-detecting potential of CeO2-doped ZnO at different ratios using clad-modified fiber optic gas sensor. J Mater Sci: Mater Electron 33, 23974–23985 (2022). https://doi.org/10.1007/s10854-022-08512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08512-2

Navigation