Skip to main content
Log in

Electrospun fibers of liquid crystal mixtures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrospinning is a powerful and promising technique in production of nano-materials namely nano-fibers. Nano-sized materials show properties apart from their macroscopic/bulk sizes, and enable us to fabricate materials that could be designed as functional composites of different kinds of materials. We electrospun to form core-sheath nanofibers composed of polyacrylonitrile (PAN) sheath with a core of widely used nematic liquid crystals (6CB and 8CB) by blending them in various ratios. The nano-fibers were fabricated in different conditions regarding the feeding rate and electrospinning voltage. The physical properties were investigated. Optical properties revealed the birefringence of the nano-fibers which is an important property for the light modulating devices. The thicknesses of the nano-fibers were determined from SEM images and the distribution of the thickness was shown in a histogram. The thermal studies put forward the N–I transition temperatures of the liquid crystal/PAN nano-fibers, that the temperatures were in compliance with that of liquid crystals. It can control light modulation by tuning such liquid crystal/fiber material known to be usable in optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.H. Reneker, I. Chun, Nanotechnology 7, 216 (1996)

    Article  CAS  Google Scholar 

  2. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)

    Article  CAS  Google Scholar 

  3. S. Faraji, N. Nowroozi, A. Nouralishahi, J. Shabani Shayeh, Life Sci. 257, 118062 (2020)

    Article  CAS  Google Scholar 

  4. H. Asadi, A. Ghaee, J. Nourmohammadi, A. Mashak, Int. J. Polym. Mater. Polym. Biomater. 69, 173 (2020)

    Article  CAS  Google Scholar 

  5. C. Drew, X. Wang, K. Senecal, H. Schreuder-Gibson, J. He, J. Kumar, L.A. Samuelson, J. Macromol. Sci. 39, 1085–1094 (2002)

    Article  CAS  Google Scholar 

  6. S. Aslan, D. Bal Altuntaş, Ç. Koçak, H. Kara Subaşat, Electroanalysis 33, 120 (2021)

    Article  CAS  Google Scholar 

  7. C.G. Reyes, A. Sharma, J.P.F. Lagerwall, Liq. Cryst. 43, 1986 (2016)

    Article  CAS  Google Scholar 

  8. N. Okutan, P. Terzi, F. Altay, Food Hydrocoll. 39, 19 (2014)

    Article  CAS  Google Scholar 

  9. B. Cramariuc, R. Cramariuc, R. Scarlet, L.R. Manea, I.G. Lupu, O. Cramariuc, J. Electrostat. 71, 189 (2013)

    Article  CAS  Google Scholar 

  10. A. Haider, S. Haider, I.K. Kang, Arab. J. Chem. 11, 1165 (2018)

    Article  CAS  Google Scholar 

  11. V. Beachley, X. Wen, Mater. Sci. Eng. C 29, 663 (2009)

    Article  CAS  Google Scholar 

  12. V. Jacobs, R.D. Anandjiwala, M. Maaza, J. Appl. Polym. Sci. 115, 3130 (2010)

    Article  CAS  Google Scholar 

  13. G. Vertogen, W.H. de Jeu, Thermotropic Liquid Crystals, Fundamentals (Springer, Berlin, 1988)

  14. J.P.F. Lagerwall, G. Scalia, Curr. Appl. Phys. 12, 1387 (2012)

    Article  Google Scholar 

  15. P. Özden, A.E. Mamuk, N. Avcı, Liq. Cryst. 46, 2190 (2019)

    Article  CAS  Google Scholar 

  16. B. Zappone, A.E. Mamuk, I. Gryn, V. Arima, A. Zizzari, R. Bartolino, E. Lacaze, R. Petschek, Proc. Natl. Acad. Sci. 117, 17643 (2020)

    Article  CAS  Google Scholar 

  17. M. Bagiński, M. Tupikowska, G. González-Rubio, M. Wójcik, W. Lewandowski, Adv. Mater. 32, 1904581 (2020)

    Article  CAS  Google Scholar 

  18. M. Kim, R.K. Mishra, R. Manda, G. Murali, T.-H. Kim, M.-H. Lee, M. Yun, S. Kundu, B.-S. Kim, S.H. Lee, RSC Adv. 7, 16650 (2017)

    Article  CAS  Google Scholar 

  19. A. Shankar, S. Pal, R. Srivastava, B. Nandan, Bull. Mater. Sci. 43, 176 (2020)

    Article  CAS  Google Scholar 

  20. G.W. Smith, G.M. Ventouris, J.L. West, Mol. Cryst. Liq. Cryst. Sci. Technol. A 213, 11 (1992)

    Article  CAS  Google Scholar 

  21. G.W. Smith, N.A. Vaz, Liq. Cryst. 3, 543 (1988)

    Article  CAS  Google Scholar 

  22. G.W. Smith, Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 180, 201 (1990)

  23. J.L. West, J.R. Wang, A. Jákli, Adv. Sci. Technol. 100, 43 (2016)

    Article  Google Scholar 

  24. J. Wang, A. Jákli, J.L. West, ChemPhysChem 16, 1839 (2015)

    Article  CAS  Google Scholar 

  25. J.P.F. Lagerwall, J.T. McCann, E. Formo, G. Scalia, Y. Xia, Chem. Commun. 5420 (2008).

  26. J. Wang, A. Jákli, J.L. West, ChemPhysChem 17, 3080 (2016)

    Article  CAS  Google Scholar 

  27. E.A. Buyuktanir, J.L. West, and M.W. Frey, in Emerg. Liq. Cryst. Technol. VI, edited by L.-C. Chien and H. Yokoyama (2011), p. 79550

  28. J. Wang, A. Jákli, J.L. West, J. Mol. Liq. 267, 490 (2018)

    Article  CAS  Google Scholar 

  29. M. Okumuş, Ş Özgan, I. Kirik, S. Kerli, J. Mol. Struct. 1120, 150 (2016)

    Article  CAS  Google Scholar 

  30. H. Karimiyan, A. Uheida, M. Hadjmohammadi, M.M. Moein, M. Abdel-Rehim, Talanta 201, 474 (2019)

    Article  CAS  Google Scholar 

  31. H. Peng, X. Wang, Y. Zhao, T. Tan, Z. Bakenov, Y. Zhang, Polymers (Basel) 10, 399 (2018)

    Article  CAS  Google Scholar 

  32. C.-H. Jung, Y.-J. Noh, J.-H. Bae, J.-H. Yu, I.-T. Hwang, J. Shin, K. Shin, J.-S. Lee, J.-H. Choi, S.-I. Na, Nano Energy 31, 19 (2017)

    Article  CAS  Google Scholar 

  33. P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals (Taylor and Francis, Boca Raton, 2006)

    Google Scholar 

  34. P. Patrício, C.R. Leal, L.F.V. Pinto, A. Boto, M.T. Cidade, Liq. Cryst. 39, 25 (2012)

    Article  CAS  Google Scholar 

  35. K. Negita, M. Inoue, S. Kondo, Phys. Rev. E 74, 1 (2006)

    Article  CAS  Google Scholar 

  36. E.A. Buyuktanir, M.W. Frey, J.L. West, Polymer (Guildf) 51, 4823 (2010)

    Article  CAS  Google Scholar 

  37. M.J. Bertocchi, D.C. Ratchford, R. Casalini, J.H. Wynne, J.G. Lundin, J. Phys. Chem. C 122, 16964 (2018)

    Article  CAS  Google Scholar 

  38. A. Drzewicz, E. Juszyńska-Gałązka, W. Zając, P. Kula, Crystals 10, 655 (2020)

    Article  CAS  Google Scholar 

  39. P. Kahl, P. Baroni, L. Noirez, Phys. Rev. E 88, 050501 (2013)

    Article  CAS  Google Scholar 

  40. V.I. Mashchenko, A.V. Goponenko, C.A. Udra, A.M. Filyakin, V.I. Gerasimov, in Adv. Disp. Technol. Basic Stud. Probl. Inf. Disp. (Flowers 2000), edited by V. V. Belyaev and I. N. Kompanets (2001), pp. 127–132.

  41. H. Fong, I. Chun, D. Reneker, Polymer (Guildf) 40, 4585 (1999)

    Article  CAS  Google Scholar 

  42. I. Dierking, Textures of Liquid Crystals (Wiley, Weinheim, 2003)

    Book  Google Scholar 

  43. Y. Wu, Q. An, J. Yin, T. Hua, H. Xie, G. Li, H. Tang, Colloid Polym. Sci. 286, 897 (2008)

    Article  CAS  Google Scholar 

  44. M.C. Popescu, D. Filip, C. Vasile, C. Cruz, J.M. Rueff, M. Marcos, J.L. Serrano, G. Singurel, J. Phys. Chem. B 110, 14198 (2006)

    Article  CAS  Google Scholar 

  45. N. Pongali Sathya Prabu, V.N. Vijayakumar, M.L.N. Madhu Mohan, J. Mol. Struct. 994, 387 (2011)

    Article  CAS  Google Scholar 

  46. M. Jasiurkowska-Delaporte, E. Juszyńska-Gałązka, W. Sas, P.M. Zieliński, A. Baranowska-Korczyc, J. Mol. Liq. 331, 115817 (2021)

    Article  CAS  Google Scholar 

  47. A.E. Mamuk, Ç. Koçak, Ç.E. Demirci Dönmez, Colloid Polym. Sci. 299, 1209 (2021)

    Article  CAS  Google Scholar 

  48. Ş Özgan, M. Okumuş, Braz. J. Phys. 41, 118 (2011)

    Article  CAS  Google Scholar 

  49. M. Sharma, C. Kaur, J. Kumar, K.C. Singh, P.C. Jain, J. Phys. Condens. Matter 13, 7249 (2001)

    Article  CAS  Google Scholar 

  50. N. Avci, A. Nesrullajev, Ş Oktik, Braz. J. Phys. 40, 224 (2010)

    CAS  Google Scholar 

  51. A.E. Mamuk, A. Nesrullajev, P.K. Mukherjee, Mol. Cryst. Liq. Cryst. 648, 168 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support of The Center of Research Laboratories and Molecular Nano Materials Laboratory which are incorporated with Mugla Sitki Kocman University.

Author information

Authors and Affiliations

Authors

Contributions

ÇK and AEM designed the research and analyzed the data; AEM, ÇK, ÇEDD and MP performed the research; AEM wrote the paper.

Corresponding author

Correspondence to Atilla Eren Mamuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçak, Ç., Mamuk, A.E., Demirci Dönmez, Ç.E. et al. Electrospun fibers of liquid crystal mixtures. J Mater Sci: Mater Electron 33, 15209–15221 (2022). https://doi.org/10.1007/s10854-022-08439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08439-8

Navigation