Skip to main content
Log in

Efficient synthesis of TiO2-coated layer for Fe-based soft magnetic composites and their regulation mechanism analysis on magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high-quality TiO2 insulating layer on the commercial gas-atomized FeSiAl powder surface was efficiently prepared within a total time of 1 h at room temperature via a one-pot sol–gel method based on a developed industry-oriented coating equipment. The core-shell structure for the chemically coated FeSiAl powders was detected by the joint tools of SEM, EDS, and FTIR. Combined with the establishment of loss separation fitting model, the regulation mechanism analysis on soft magnetic properties was carried out for the FeSiAl powder cores insulated with different TiO2 coating amounts. It is found that the interface-pinning effect, which is closely related to the core’s density, is an important factor affecting the magnetic properties of powder cores. With the elevating TiO2 coating amount, the hysteresis loss, the excess loss, and DC-bias property of the core specimen exhibit the same increasing tendency, while the real part of complex permeability at 100 kHz gradually decreases owing to the increase of non-magnetic gap between the particles in the core, which can impede the domain-wall motion during magnetization. Correspondingly, the eddy current loss persistently decreases and contributes only 18.7% ~ 21.6% of total core loss when the precursor concentration is over 0.08 ml/g due to the formation of the intergranular insulated structure blocking the inter-particle eddy current flows in the composites. These results offer insights into subtly regulating magnetic properties when the adjusting process parameters for the soft magnetic composites are used in high-power and high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Science 362, eaao0195 (2018)

    Article  Google Scholar 

  2. E.A. Périgo, B. Weidenfeller, P. Kollár, J. Füzer, Appl. Phys. Rev. 5, 031301 (2018)

    Article  Google Scholar 

  3. F. Onderko, Z. Birčáková, S. Dobák, P. Kollár, M. Tkáč., M. Fáberová, J. Füzer, R. Bureš, J. Szabó, A. Zeleňáková, J. Magn. Magn. Mater. 543, 168640 (2022)

    Article  CAS  Google Scholar 

  4. M. Lauda, J. Füzer, P. Kollár, M. Strečková, R. Bureš, J. Kováč, M. Baťková, I. Baťko, J. Magn. Magn. Mater. 411, 12 (2016)

    Article  CAS  Google Scholar 

  5. Z.L. Guo, J.H. Wang, W.H. Chen, D.C. Chen, H.B. Sun, Z.L. Xue, C. Wang, Mater. Des. 192, 108769 (2020)

    Article  CAS  Google Scholar 

  6. J.H. Wang, S.Q. Song, H.B. Sun, G.H. Hang, Z.L. Xue, C. Wang, D.C. Chen, J. Magn. Magn. Mater. 519, 167496 (2021)

    Article  CAS  Google Scholar 

  7. W.C. Li, H.W. Cai, Y. Kang, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, Y. Jiang, S.L. Che, Acta Mater. 167, 267 (2019)

    Article  CAS  Google Scholar 

  8. O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)

    Article  CAS  Google Scholar 

  9. B. Zhou, Q. Chi, Y. Dong, L. Liu, Y. Zhang, L. Chang, Y. Pan, A. He, J. Li, X. Wang, J. Magn. Magn. Mater. 494, 165827 (2020)

    Article  CAS  Google Scholar 

  10. M. Liu, K.Y. Huang, L. Liu, T. Li, P.P. Cai, Y.Q. Dong, X.M. Wang, J. Mater. Sci.-Mater. Electron. 29, 6092 (2018)

    Article  CAS  Google Scholar 

  11. K.R. Yang, W.J. Chen, Y.S. Zhao, L.J. Ding, B. Du, S. Zhang, W. Yang, Compos. Sci. Technol. 221, 109178 (2021)

    Article  Google Scholar 

  12. Z.D. Wang, T. Zhang, J.K. Wang, G.Q. Yang, M.L. Li, G.L. Wu, Nanomaterials 12, 446 (2022)

    Article  CAS  Google Scholar 

  13. M. Yaghtin, A.H. Taghvaei, B. Hashemi, J. Janghorban, J. Alloys Compd. 581, 293 (2013)

    Article  CAS  Google Scholar 

  14. J. Wang, X.A. Fan, Z.Y. Wu, G.Q. Li, Adv. Powder Technol. 27, 1189 (2016)

    Article  CAS  Google Scholar 

  15. Z.Y. Wu, Z. Jiang, X.A. Fan, L.J. Zhou, W.L. Wang, K. Xu, J. Alloys Compd. 742, 90 (2018)

    Article  CAS  Google Scholar 

  16. B. Zhou, Y.Q. Dong, L. Liu, L. Chang, F.Q. Bi, X.M. Wang, J. Magn. Magn. Mater. 474, 1 (2019)

    Article  CAS  Google Scholar 

  17. D.H. Luo, C. Wu, M. Yan, J. Magn. Magn. Mater. 452, 5 (2019)

    Article  Google Scholar 

  18. M.M. Zhou, Y. Han, W.W. Guan, S.J. Han, Q.S. Meng, T.T. Xu, H.L. Su, X. Guo, Z.Q. Zou, F.Y. Yang, Y.W. Du, J. Magn. Magn. Mater. 482, 148 (2019)

    Article  CAS  Google Scholar 

  19. J.H. Wang, Z.L. Xue, S.Q. Song, H.B. Sun, J. Mater. Sci.-Mater. Electron. 32, 20401 (2021)

    Google Scholar 

  20. L.Y. Li, Q.L. Chen, Z. Gao, Y.C. Ge, J.H. Yi, J. Alloys Compd. 805, 609 (2019)

    Article  CAS  Google Scholar 

  21. Z.G. Luo, X.A. Fan, W.T. Hu, F. Luo, Y.W. Li, J. Wang, X. Liu, J. Solid State Chem. 270, 311 (2019)

    Article  CAS  Google Scholar 

  22. Z.G. Luo, X.A. Fan, W.T. Hu, F. Luo, J. Wang, Z.Y. Wu, X. Liu, G.Q. Li, Y. Li, J. Magn. Magn. Mater. 496, 165937 (2019)

    Article  Google Scholar 

  23. Y.D. Peng, Y. Yi, L.Y. Li, J.H. Yi, J.W. Nie, C.X. Bao, Mater. Des. 109, 390 (2016)

    Article  CAS  Google Scholar 

  24. K. Sun, S. Feng, Q. Jiang, X.F. Li, Y.P. Li, R.H. Fan, Y. An, J.Q. Wang, J. Magn. Magn. Mater. 493, 165705 (2020)

    Article  CAS  Google Scholar 

  25. B.Y. Meng, J.X. Hou, F.Z. Ning, B. Yang, B.H. Zhou, R.H. Yu, J. Magn. Magn. Mater. 492, 165651 (2019)

    Article  CAS  Google Scholar 

  26. H.B. Sun, C. Wang, J.H. Wang, M.G. Yu, Z.L. Guo, J. Magn. Magn. Mater. 502, 166548 (2020)

    Article  CAS  Google Scholar 

  27. C. Wang, Z.L. Guo, J. Wang, H.B. Sun, X. Liu, J. Magn. Magn. Mater. 509, 166924 (2020)

    Article  CAS  Google Scholar 

  28. M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Sep. Purif. Technol. 185, 140 (2017)

    Article  CAS  Google Scholar 

  29. F.S. Razavi, A. Sobhani, O. Amiri, M.G. Arani, M. Salavati-Niasari, Int J. Hydrog. Energy 45, 17662 (2020)

    Article  CAS  Google Scholar 

  30. M.G. González, J.C. Cabanelas, J. Baselga, Infrared Spec. 2, 261 (2011)

  31. J. Xie, H. Sun, X. Zhang, Z. Xie, Z. Zhang, Phosphorus Sulfur Silicon Relat. Elem. 190, 277 (2015)

    Article  CAS  Google Scholar 

  32. H.E. Wang, J. Jin, Y. Cai, J.M. Xu, D.S. Chen, X.F. Zheng, Z. Deng, Y. Li, I. Bello, B.L. Su, J. Colloid Interface Sci. 417, 144 (2014)

    Article  CAS  Google Scholar 

  33. M.T. Johnson, E.G. Visser, IEEE Trans. Magn. 26, 1987 (1990)

    Article  CAS  Google Scholar 

  34. T. Gheiratmand, H.R.M. Hosseini, S.M.S. Reihani, J. Magn. Magn. Mater. 429, 241 (2017)

    Article  CAS  Google Scholar 

  35. L.F. Sun, Z.R. Jia, S. Xu, M.B. Ling, D.Q. Hu, X.H. Liu, C.H. Zhang, G.L. Wu, Compos. Commun. 29 100993 (2022)

    Article  Google Scholar 

  36. J. Fuzerova, J. Fuzer, P. Kollar, L. Hegedüs, R. Bures, M. Faberova, IEEE Trans. Magn. 48, 1545 (2012)

    Article  CAS  Google Scholar 

  37. T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, G.L. Wu, Chem. Eng. J. 431, 133919 (2022)

    Article  CAS  Google Scholar 

  38. C.X. Wang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang, M.L. Tian, B.B. Wang, G.L. Wu, J. Mater. Sci. Technol. 108, 236 (2022)

    Article  Google Scholar 

  39. G. Bertotti, IEEE Trans. Magn. 24, 621 (1988)

    Article  Google Scholar 

  40. L. Dakova, J. Fuzer, S. Dobak, P. Kollar, Y. Osadchuk, M. Streckova, M. Faberova, R. Bures, P. Kurek, M. Vojtko, IEEE Trans. Magn. 54, 1 (2018)

    Article  Google Scholar 

  41. P. Kollar, Z. Bircakova, J. Fuzer, R. Bures, M. Faberova, J. Magn. Magn. Mater. 327, 146 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515011796), Guangdong Province Key Project of Foundation and Application Foundation Research Joint Fund (Grant No. 2019B1515120020), and Foshan Municipal Key Technology Tackling Program (Grant No. 1920001001392).

Author information

Authors and Affiliations

Authors

Contributions

This work was planned by HS, executed by CW and ZG. GZ, CZ, and JW analyzed the data. HS and JW wrote the final paper.

Corresponding authors

Correspondence to Haibo Sun or Jinghui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhou, G., Guo, Z. et al. Efficient synthesis of TiO2-coated layer for Fe-based soft magnetic composites and their regulation mechanism analysis on magnetic properties. J Mater Sci: Mater Electron 33, 13956–13967 (2022). https://doi.org/10.1007/s10854-022-08326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08326-2

Navigation