Skip to main content

Advertisement

Log in

Studies on modulated physical and photoelectrochemical properties of CdSe thin films by means of Indium doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well-packed pristine CdSe and Indium-doped CdSe (In:CdSe) thin films have been successfully synthesized on a cost-effective stainless steel substrates by simple chemical route and their performance as photoanode in photoelectrochemical (PEC) solar cell was investigated. With the view to enhance the efficiency of solar cell, various preparative parameters were optimized using renowned PEC way. The Pristine CdSe and In:CdSe thin films were characterized for structural, morphological, optical, and photoelectrochemical studies. The structural analysis revealed modest improvement in crystallinity owed to Indium doping. Morphological modulation noticed from cauliflower structure to elliptical-shaped elongated grains, subsequent to insertion of Indium in CdSe lattice. Doped CdSe photoanodes were found to be more hydrophilic in nature than pristine. Both films possess direct transitions with decrease in band gap energies from 2.1 to 1.91 eV, attributable to doping. Improved power conversion efficiency from 0.54 to 0.79% is recorded as an outcome of indium doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull. 47, 302 (2012). https://doi.org/10.1016/j.materresbull.2011.11.020

    Article  CAS  Google Scholar 

  2. C.S. Bagade, V.B. Ghanwat, K.V. Khot, P.N. Bhosale, Mater. Lett. 164, 52 (2016). https://doi.org/10.1016/j.matlet.2015.10.099

    Article  CAS  Google Scholar 

  3. V.S. Raut, C.D. Lokhande, V.V. Killedar, J. Mater. Sci. Mater. Electron. 28, 3140 (2017). https://doi.org/10.1007/s10854-016-5902-6

    Article  CAS  Google Scholar 

  4. L.N. Maskaeva, V.F. Markov, O.A. Lipina, A.V. Pozdin, I.A. Anokhina, Russ. J. Phys. Chem. 94, 2441 (2020). https://doi.org/10.1134/S0036024420120195

    Article  CAS  Google Scholar 

  5. G. Perna, V. Capozzi, A. Minafra, M. Pallara, M. Ambrico, Eur. Phys. J. B 32, 339 (2003). https://doi.org/10.1140/epjb/e2003-00107-6

    Article  CAS  Google Scholar 

  6. Q. Dai, E.M. Sabio, W. Wang, J. Tang, Appl. Phys. Lett. 104(18), 183901 (2014). https://doi.org/10.1063/1.4875107

    Article  CAS  Google Scholar 

  7. R. Sahebi, M.R. Roknabadi, M. Behdani, Mater. Res. Express. 6, 126453 (2019). https://doi.org/10.1088/2053-1591/ab6c17

    Article  CAS  Google Scholar 

  8. A.A. Yadav, J. Alloys Compd. 543, 129 (2012). https://doi.org/10.1016/j.jallcom.2012.07.097

    Article  CAS  Google Scholar 

  9. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, J. Electroanal. Chem. 727, 179 (2014). https://doi.org/10.1016/j.jelechem.2014.04.005

    Article  CAS  Google Scholar 

  10. K.Y. Rajpure, P.A. Anarase, C.D. Lokhande, C.H. Bhosale, Phys. Stat. Sol. (a) 172(2), 415 (1999)

    Article  CAS  Google Scholar 

  11. A.A. Yadav, J. Mater. Sci. Mater. Electron. 27, 4508 (2016). https://doi.org/10.1007/s10854-016-4325-8

    Article  CAS  Google Scholar 

  12. P.P. Hankare, P.A. Chate, D.J. Sathe, Phys. B 404, 2389 (2009). https://doi.org/10.1016/j.physb.2009.04.048

    Article  CAS  Google Scholar 

  13. K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, S.R. Gosavi, J. Sci.: Adv. Mater. Dev. 1, 476 (2016). https://doi.org/10.1016/j.jsamd.2016.11.001

    Article  Google Scholar 

  14. F. Laatar, A. Harizi, A. Smida, M. Hassen, H. Ezzaouia, Mater. Res. Bull. 78, 83 (2016). https://doi.org/10.1016/j.materresbull.2016.02.021

    Article  CAS  Google Scholar 

  15. V. Swaminathan, K.R. Murali, Sol. Energy Mater. Sol. Cells. 63(2), 207 (2000). https://doi.org/10.1016/S0927-0248(00)00010-6

    Article  CAS  Google Scholar 

  16. R. Choudhary, R.P. Chavan, J. Mater. Sci. Mater. Electron. 27, 11674 (2016). https://doi.org/10.1007/s10854-016-5303-x

    Article  CAS  Google Scholar 

  17. V.S. Raut, C.D. Lokhande, V.V. Killedar, J. Electroanal. Chem. 788, 137–143 (2017). https://doi.org/10.1016/j.jelechem.2017.02.010

    Article  CAS  Google Scholar 

  18. G. Hodes, Phys. Chem. Chem. Phys. 9(18), 2181 (2007). https://doi.org/10.1039/B616684A

    Article  CAS  Google Scholar 

  19. G.H. Fekadu, A. Tizazu, Int. J. Thin. Fil. Sci. Tec. 8(2), 43 (2019). https://doi.org/10.18576/ijtfst/080203

    Article  Google Scholar 

  20. S.M. Ho, Res. J. Appl. Sci. Eng. Tech. 11(10), 1058 (2015). https://doi.org/10.19026/rjaset.11.2119

    Article  CAS  Google Scholar 

  21. V.S. Raut, V.V. Killedar, C.D. Lokhande, Int. J. Eng. Res. Technol. 10(1), 568 (2017)

    Google Scholar 

  22. S.M. Pawar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, J. Phys. Chem. Solids 10(1), 2386 (2006). https://doi.org/10.1016/j.jpcs.2006.06.015

    Article  CAS  Google Scholar 

  23. H. Sabri, S. Saleh, A. Zyoud, N.N. Abdel-Rahman, I. Saadeddin, G. Campet, D. Park, M. Faroun, H.S. Hilal, Electrochim. Acta. 136, 138 (2014). https://doi.org/10.1016/j.electacta.2014.05.071

    Article  CAS  Google Scholar 

  24. M. Piryaei, E.G. Hatam, N. Ghobadi, J. Mater. Sci. Mater. Electron. 28, 2550 (2017). https://doi.org/10.1007/s10854-016-5830-5

    Article  CAS  Google Scholar 

  25. G.S. Shahane, K.M. Garadkar, L.P. Deshmukh, Mater. Chem. Phys. 51, 246 (1997). https://doi.org/10.1016/S0254-0584(97)80313-6

    Article  CAS  Google Scholar 

  26. E.C.F. da Silva and D. Strauch, Landolt-Börnstein—Group III Condensed Matter Volume 44E, New Data and Updates for several III–V (including mixed crystals) and II–VI Compounds. DOI: https://doi.org/10.1007/978-3-642-23415-6_77 (Springer-Verlag Berlin Heidelberg 2012) p. 134.

  27. V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, D.R.T. Zahn, Nanotechnology 19, 305707 (2008). https://doi.org/10.1088/0957-4484/19/30/305707

    Article  CAS  Google Scholar 

  28. S. Das, A. Dutta, S. Banerjee, T.P. Sinha, Mater. Sci. Semicond. Process. 18, 152 (2014). https://doi.org/10.1016/j.mssp.2013.11.023

    Article  CAS  Google Scholar 

  29. S. Wageh, Physica E 39, 8 (2007). https://doi.org/10.1016/j.mssp.2013.11.023

    Article  CAS  Google Scholar 

  30. C. Kong, S. Sun, J. Zhang, H. Zhao, X. Song, Z. Yang, Cryst. Eng. Comm. 14, 5737 (2012). https://doi.org/10.1039/C2CE25709B

    Article  CAS  Google Scholar 

  31. A.A. Yadav, M.A. Barote, T.V. Chavan, E.U. Masumdar, J. Alloys Compd. 509, 916 (2011). https://doi.org/10.1016/j.jallcom.2010.09.130

    Article  CAS  Google Scholar 

  32. A.M. Perez Gonalez, I.V. Arreola, REVISTA MEXICANA DE FI´SICA 55, 51 (2009) DESCARGAR ARTÍCULO EN FORMATO PDF

  33. J. Xiao, L. Peng, L. Gao, J. Zhong, Z. Huang, E. Yuan, V. Srinivasapriyan, S.F. Zhou, G. Zhan, RSC Adv. 11, 16600 (2021). https://doi.org/10.1039/d1ra02826j

    Article  CAS  Google Scholar 

  34. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, RSC Adv. 4, 33184 (2014). https://doi.org/10.1039/C4RA02791D

    Article  CAS  Google Scholar 

  35. A. V. Shaikh, R.S. Mane, O. S. Joo, B. N. Pawar, J. K. Lee, S. H. Wan Han, J. Phys Chem solids. 72(10), 1122 (2011). DOI :https://doi.org/10.1016/j.jpcs.2011.06.017

  36. C. Bhattacharya, J. Datta, J Solid State Electrochem 11, 215 (2007). https://doi.org/10.1007/s10008-005-0091-x

    Article  CAS  Google Scholar 

  37. P.P. Hankare, P.A. Chate, D.J. Sathe, M.R. Asabe, B.V. Jadhav, J. Alloys Compd. 474(1–2), 347 (2009). https://doi.org/10.1016/j.jallcom.2008.06.081

    Article  CAS  Google Scholar 

  38. P.P. Hankare, P.A. Chate, P.A. Chavan, D.J. Sathe, J. Alloys Compd. 461, 623 (2008). https://doi.org/10.1016/j.jallcom.2007.07.071

    Article  CAS  Google Scholar 

  39. S.J. Lade, M.D. Uplane, C.D. Lokhande, Mater. Chem. Phys. 68, 36 (2001). https://doi.org/10.1016/S0254-0584(00)00280-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (VSR) is grateful to UGC, New Delhi for award of teacher fellowship.

Funding

There are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated sufficiently in the manuscript's concept, design, analysis, writing, or revision. All authors examined, critically revised the manuscript, and then approved the final manuscript.

Corresponding author

Correspondence to V. V. Killedar.

Ethics declarations

Conflict of interest

The authors do not have any competing interests.

Ethical approval

This manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. The paper reflects the authors’ own research and analysis in a truthful and complete manner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, V.S., Lokhande, C.D., Shelke, H.D. et al. Studies on modulated physical and photoelectrochemical properties of CdSe thin films by means of Indium doping. J Mater Sci: Mater Electron 33, 13782–13791 (2022). https://doi.org/10.1007/s10854-022-08310-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08310-w

Navigation