Skip to main content

Advertisement

Log in

Prediction of the lithium storage capacity of hollow carbon nano-spheres based on their size and morphology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To date, there is an enormous experimental research focus on discovering the usage of carbon materials as Lithium-ion battery (LIB) anode active materials, though there is a limited number of scientific articles exploring the links between the properties of these materials and their lithium storage performance. The goal of this study is to find the relationship between the size and shape of carbon hollow spheres and their lithium storage capacity via modeling. This research considers the lithium storage of hollow carbon spheres originated from two distinct bulk- and surface-dependent mechanisms. Based on this assumption, a unique model is developed that uses a factor termed “normalized volume” to appropriately consider and estimate the contribution of the surface and bulk phenomena to the lithium storage capacity of a carbon hollow sphere. The model exhibited that shrinking the shell thickness of carbon hollow spheres to less than 20 nm significantly increases their lithium storage capacity. The agreement of the predicted and experimentally reported lithium storage capacities was evaluated by comparing the calculated values to experimental data from the literature. This model has the potential to be used as a foundational method or guideline to forecast the lithium storage capacity of different nano-scaled carbon materials regarding their inner structure, size, and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

CRediT authorship contribution statement

Majid Shaker: Methodology, Project administration, Modeling, Writing – original draft, Writing – review & editing. Maziar Sahba Yaghmaee: Conceptualization, Modeling, Supervision, Visualization, review & editing. Taieb Shahalizade, Ali Asghar Sadeghi Ghazvini, and Reza Riahifar: Conceptualization, review & editing, Babak Raissi and Qi Ge: Resources.

References

  1. M. Shaker et al., Biomass-derived porous carbons as supercapacitor electrodes – a review. New Carbon Mater. 36(3), 546–572 (2021)

    Article  Google Scholar 

  2. X. LENG et al., Introduction to two-dimensional materials. Surf. Rev. Lett. 28(08), 2140005 (2021)

    Article  CAS  Google Scholar 

  3. M. Shaker, R. Riahifar, Y. Li, A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: synthesis and application. FlatChem 22, 100171 (2020)

    Article  CAS  Google Scholar 

  4. X Leng et al (2022) Technology and applications of graphene oxide membranes, in Molecular Interactions On Two-dimensional Materials. World Scientific, Singapore, pp 379–422

  5. M. Shaker et al., A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: lithium-ion battery anode capacity prediction. Carbon Lett. 31(5), 985–990 (2021)

    Article  Google Scholar 

  6. M. Shaker, E. Salahinejad, F. Ashtari-Mahini, Hydrophobization of metallic surfaces by means of Al2O3-HDTMS coatings. Appl. Surf. Sci. 428, 455–462 (2018)

    Article  CAS  Google Scholar 

  7. C. Yi et al., A green and facile approach for regeneration of graphite from spent lithium ion battery. J. Clean. Prod. 277, 123585 (2020)

    Article  CAS  Google Scholar 

  8. M. Shaker et al., Prediction of size- and shape-dependent lithium storage capacity of carbon nano-spheres (quantum dots). J. Nanopart. Res. 23(8), 176 (2021)

    Article  CAS  Google Scholar 

  9. Y. Yang et al., Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 406, 126807 (2021)

    Article  CAS  Google Scholar 

  10. M.A. Azam et al., Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: a comprehensive review. J. Energy Storage 33, 102096 (2021)

    Article  Google Scholar 

  11. X. Gao, W. Lu, J. Xu, Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 (2021)

    Article  CAS  Google Scholar 

  12. Y. Chen, X. Chen, Y. Zhang, A Comprehensive review on metal-oxide nanocomposites for high-performance lithium-ion battery anodes. Energy & Fuels 35(8), 6420–6442 (2021)

    Article  CAS  Google Scholar 

  13. A.A. Sadeghi Ghazvini et al., Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode. Mater. Lett. 285, 129195 (2021)

    Article  CAS  Google Scholar 

  14. S.N. Faisal et al., 3D copper-confined N-doped graphene/carbon nanotubes network as high-performing lithium-ion battery anode. J. Alloys Compd. 850, 156701 (2021)

    Article  CAS  Google Scholar 

  15. M. Shaker et al (2021) Improving the Electrochemical Performance of Pouch Cell Electric Double-Layer Capacitors by Integrating Graphene Nanoplates into Activated Carbon. Energy Technol. doi:10.1002/ente.202100735

  16. M. Shaker et al., The effect of graphene orientation on permeability and corrosion initiation under composite coatings. Constr. Build. Mater. 319, 126080 (2022)

    Article  CAS  Google Scholar 

  17. X. Yang et al., Controllable synthesis of silicon/carbon hollow microspheres using renewable sources for high energy lithium-ion battery. J. Solid State Chem. 296, 121968 (2021)

    Article  CAS  Google Scholar 

  18. M. Shang et al., N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Appl. Surf. Sci. 542, 148697 (2021)

    Article  CAS  Google Scholar 

  19. J.-S. Li, Y.-W. Zhou, M.-J. Huang, Engineering Mo x C nanoparticles confined in N, P-codoped porous carbon hollow spheres for enhanced hydrogen evolution reaction. Dalton Trans. 50(2), 499–503 (2021)

    Article  CAS  Google Scholar 

  20. L. Chai et al., In-situ growth of core-shell ZnFe2O4@ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci. 581, 475–484 (2021)

    Article  CAS  Google Scholar 

  21. S. Yang et al., Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries. Nano Energy 90, 106584 (2021)

    Article  CAS  Google Scholar 

  22. Y. Han et al., Multifunctional carbon-confined FeS nanoparticles for a self-supporting and high-capacity cathode in lithium ion battery. J. Electroanal. Chem. 880, 114849 (2021)

    Article  CAS  Google Scholar 

  23. T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31(17), 2010041 (2021)

    Article  CAS  Google Scholar 

  24. A.R. Fathi et al., Optimization of cathode material components by means of experimental design for Li-ion batteries. J. Electron. Mater. 49(11), 6547–6558 (2020)

    Article  CAS  Google Scholar 

  25. A. Chamaani et al., Thermodynamics and molecular dynamics investigation of a possible new critical size for surface and inner cohesive energy of Al nanoparticles. J. Nanopart. Res. 13(11), 6059–6067 (2011)

    Article  CAS  Google Scholar 

  26. M.S. Yaghmaee, H.A. Baghbaderani, Thermodynamics modeling of cohesive energy of metallic nano-structured materials. Mater. Des. 114, 521–530 (2017)

    Article  CAS  Google Scholar 

  27. S.S. SebtAhmadi et al., General modeling and experimental observation of size dependence surface activity on the example of Pt nano-particles in electrochemical CO gas sensors. Sens. Actuators B 285, 310–316 (2019)

    Article  CAS  Google Scholar 

  28. M. Shaker, E. Salahinejad, A combined criterion of surface free energy and roughness to predict the wettability of non-ideal low-energy surfaces. Prog. Org. Coat. 119, 123–126 (2018)

    Article  CAS  Google Scholar 

  29. V.Z. Asl et al., Corrosion properties and surface free energy of the Zn-Al LDH/rGO coating on MAO pretreated AZ31 magnesium alloy. Surface and Coatings Technol. 2021: p. 127764

  30. V. Jahangir, R. Riahifar, M. Sahba Yaghmaee, A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films. Thin Solid Films 603, 294–302 (2016)

    Article  CAS  Google Scholar 

  31. M.S. Yaghmaee, B. Shokri, Effect of size on bulk and surface cohesion energy of metallic nano-particles. Smart Mater. Struct. 16(2), 349–354 (2007)

    Article  CAS  Google Scholar 

  32. K. Tang et al., Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2(7), 873–877 (2012)

    Article  CAS  Google Scholar 

  33. G. Zheng et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9(8), 618–623 (2014)

    Article  CAS  Google Scholar 

  34. K. Huo et al., Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J. Power Sources 324, 233–238 (2016)

    Article  CAS  Google Scholar 

  35. S. Yang et al., Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 22(7), 838–842 (2010)

    Article  CAS  Google Scholar 

  36. S. SebtAhmadi et al., General modeling and experimental observation of size dependence surface activity on the example of Pt nano-particles in electrochemical CO gas sensors. Sens. Actuators B 285, 310–316 (2019)

    Article  CAS  Google Scholar 

  37. N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21(25-26), 2664–2680 (2009)

    Article  CAS  Google Scholar 

  38. Y. Liu et al., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996)

    Article  CAS  Google Scholar 

  39. S. Gu et al., Improved lithium storage capacity and high rate capability of nitrogen-doped graphite-like electrode materials prepared from thermal pyrolysis of graphene quantum dots. Electrochim. Acta 354, 136642 (2020)

    Article  CAS  Google Scholar 

  40. R. Yazami, Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochim. Acta 45(1–2), 87–97 (1999)

    Article  CAS  Google Scholar 

  41. A. Chamaani et al., Thermodynamics and molecular dynamics investigation of a possible new critical size for surface and inner cohesive energy of Al nanoparticles. J. Nanopart. Res. 13(11), 6059–6067 (2011)

    Article  CAS  Google Scholar 

  42. Z. Ni et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7(9), 2758–2763 (2007)

    Article  CAS  Google Scholar 

  43. X. Zeng et al., Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode. ACS Appl. Mater. Interfaces 8(29), 18841–18848 (2016)

    Article  CAS  Google Scholar 

  44. F.D. Han et al., Template-free synthesis of interconnected hollow carbon nanospheres for high‐performance anode material in lithium‐ion batteries. Adv. Energy Mater. 1(5), 798–801 (2011)

    Article  CAS  Google Scholar 

  45. J. Zang et al., Hollow-in-hollow carbon spheres for lithium-ion batteries with superior capacity and cyclic performance. Electrochim. Acta 186, 436–441 (2015)

    Article  CAS  Google Scholar 

  46. S. Zou et al., Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater. 251, 114–121 (2017)

    Article  CAS  Google Scholar 

  47. Q. Huang et al., Hollow carbon nanospheres with extremely small size as anode material in lithium-ion batteries with outstanding cycling stability. J. Phys. Chem. C 120(6), 3139–3144 (2016)

    Article  CAS  Google Scholar 

  48. E. Thauer et al., Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. Energy 217, 119399 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shaker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, M., Yaghmaee, M.S., Shahalizade, T. et al. Prediction of the lithium storage capacity of hollow carbon nano-spheres based on their size and morphology. J Mater Sci: Mater Electron 33, 12760–12770 (2022). https://doi.org/10.1007/s10854-022-08222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08222-9

Navigation