Skip to main content
Log in

Co2Z hexaferrites with equivalent permeability and permittivity in UHF band

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of modern communication technology, all kinds of wireless communication devices are developing rapidly toward miniaturization, lightweight, and integration, which puts forward higher requirements for the size and volume of the antenna. In recent years, magneto-dielectric ferrite materials have been widely studied because of their good performance in magnetic and dielectric properties. In this work, a series of Ba1.5Sr1.5Co2−xFe24+xO41 (x = 0, 0.2, 0.4, 0.6) materials were successfully synthesized through the traditional solid-state reaction method. The influences of Fe substitution on the phase formation, microstructure, high-frequency dielectric, and magnetic properties were studied. It is found that, with the increase of substitution amount, the real permeability decreases from 8.8 to 4.2, and the real permittivity increases from 7.6 to 9.8. When the amount of substitution is relatively low (x = 0, 0.2), the real permeability and permittivity of the materials are almost equivalent at the frequency of 500 MHz to 1.0 GHz. The sample of x = 0.2 with permeability (7.1 to 8.2) and permittivity (7.8), and low losses (tanδµ ≤ 0.22, tanδε ≤ 0.02) could be used for antenna miniaturization in UHF band in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability 

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C.C. Xiang, Y. Nie, Z.K. Feng, R.Z. Gong, Z. Yuan, Low-loss Z-type hexaferrite for microwave antenna miniaturization application. Mater. Sci. Forum 687, 309–314 (2011). https://doi.org/10.4028/www.scientific.net/MSF.687.309

    Article  CAS  Google Scholar 

  2. H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans. Antenn. Propag. 52, 1558–1567 (2004). https://doi.org/10.1109/TAP.2004.829413

    Article  Google Scholar 

  3. Z. Zheng, X. Wu, A miniaturized UHF vivaldi antenna with tailored radiation performance based on magneto-dielectric ferrite materials. IEEE Trans. Magn. 56(3), 1–5 (2020). https://doi.org/10.1109/TMAG.2019.2962030

    Article  Google Scholar 

  4. Q. Li, S. Yan, X. Wang, Y. Nie, Z. Feng, Z. Su, Y. Chen, V.G. Harris, Dual-ion substitution induced high impedance of Co2Z hexaferrites for ultra-high frequency applications. Acta Mater. 98, 190–196 (2015). https://doi.org/10.1016/j.actamat.2015.07.038

    Article  CAS  Google Scholar 

  5. Z. Su, Q. Li, X. Wang, B. Hu, Z. Feng, Y. Chen, V.G. Harris, Tunable permittivity and permeability of low loss Z + Y-type ferrite composites for ultra-high frequency applications. J. Appl. Phys. 117, 17E506 (2015). https://doi.org/10.1063/1.4916557

    Article  CAS  Google Scholar 

  6. H. Su, X. Tang, H. Zhang, Y. Jing, F. Bai, Low-loss magneto-dielectric materials: approaches and developments. J. Electron. Mater. 43, 299–307 (2014). https://doi.org/10.1007/s11664-013-2831-5

    Article  CAS  Google Scholar 

  7. K. Ali, A. Bahadur, A. Jabbar, S. Iqbal, I. Ahmad, M.I. Bashir, Synthesis, structural, dielectric and magnetic properties of CuFe2O4/MnO2 nanocomposites. J. Magn. Magn. Mater. 434, 30–36 (2017). https://doi.org/10.1016/j.jmmm.2016.12.009

    Article  CAS  Google Scholar 

  8. S. Iqbal, Spatial charge separation and transfer in L-Cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution. Appl. Catal. B-Environ (2020). https://doi.org/10.1016/j.apcatb.2020.119097

    Article  Google Scholar 

  9. A.K. Ali, I.M. Sarfraz, A. Mirza, S. Bahadur, A. Iqbal, Haq, Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr. Appl. Phys. 15, 925–929 (2015). https://doi.org/10.1016/j.cap.2015.04.030

    Article  Google Scholar 

  10. K. Ali, J. Iqal, T. Jan, I. Ahmad, D. Wan, A. Bahadur, S. Iqbal, Synthesis of CuFe2O4-ZnO nanocomposites with enhanced electromagnetic wave absorption properties. J. Alloys Compd. 705, 559–565 (2017). https://doi.org/10.1016/j.jallcom.2017.01.264

    Article  CAS  Google Scholar 

  11. A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, I. Ahmad, M.S. ur Rahman, M.I. Bashir, M. Yaseen, W. Hussain, Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material. Ceram. Int. 43, 7346–7350 (2017). https://doi.org/10.1016/j.ceramint.2017.03.039

    Article  CAS  Google Scholar 

  12. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, A. Bahadur, M.M. AL-Anazy, A. Laref, D. Li, Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloid Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2021.126176

    Article  Google Scholar 

  13. S. Iqbal, A. Bahadur, S. Anwer, S. Ali, R.M. Irfan, H. Li, M. Shoaib, M. Raheel, T.A. Anjum, M. Zulqarnain, Effect of temperature and reaction time on the morphology of l-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light. Colloid Surf. A (2020). https://doi.org/10.1016/j.colsurfa.2020.124984

    Article  Google Scholar 

  14. S. Iqbal, M. Javed, S.S. Hassan, S. Nadeem, A. Akbar, M.T. Alotaibi, R.M. Alzhrani, N.S. Awwad, H.A. Ibrahium, A. Mohyuddin, Binary Co@ZF/S@GCN S-scheme heterojunction enriching spatial charge carrier separation for efficient removal of organic pollutants under sunlight irradiation. Colloid Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2021.128177

    Article  Google Scholar 

  15. R. Peng, Y. Lu, Q. Zhang, Y. Lai, G. Yu, X. Wu, Y. Li, H. Su, H. Zhang, Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: a mechanism study of nickel substitution using DFT calculation. J. Adv. Ceram. 10, 1398–1407 (2021). https://doi.org/10.1007/s40145-021-0515-9

    Article  CAS  Google Scholar 

  16. R. Peng, H. Su, D. An, Y. Lu, Z. Tao, D. Chen, L. Shi, Y. Li, The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment. J. Mater. Res. Technol. 9, 1344–1356 (2019). https://doi.org/10.1016/j.jmrt.2019.11.061

    Article  CAS  Google Scholar 

  17. R. Peng, Y. Lu, Y. Li, H. Su, L. Shi, G. Yu, Y. Lai, Q. Zhao, X. Shi, H. Zhang, Mechanism study of the Mn-substituted magnesium borate: decreased sintering temperature and improved dielectric property. J. Am. Ceram. Soc. 104(9), 4614–4623 (2021). https://doi.org/10.1111/jace.17875

    Article  CAS  Google Scholar 

  18. R. Peng, Y. Li, H. Su, Y. Lu, L. Shi, G. Yu, G. Wang, G. Gan, C. Yu, Three-phase borate solid solution with low sintering temperature, high‐quality factor, and low dielectric constant. J. Am. Ceram. Soc. 104, 3303–3315 (2021). https://doi.org/10.1111/jace.17707

    Article  CAS  Google Scholar 

  19. R. Peng, Y. Li, Y. Lu, Y. Yun, W. Du, Z. Tao, B. Liao, High-performance microwave dielectric composite ceramics sintered at low temperature without sintering-aids. J. Alloys Compd. 831, 154878 (2020). https://doi.org/10.1016/j.jallcom.2020.154878

    Article  CAS  Google Scholar 

  20. J.-S. Kim, L.Young-Hie Lee, B. Lee, J.-C. Choi, J. Joo, J. Kim, Young, Effects of magneto-dielectric ceramics for small antenna application. J. Electr. Eng. Technol. 9(1), 273–279 (2014)

    Article  Google Scholar 

  21. Z. Su, H. Chang, X. Wang, A.S. Sokolov, B. Hu, Y. Chen, V.G. Harris, Low loss factor Co2Z ferrite composites with equivalent permittivity and permeability for ultra-high frequency applications. Appl. Phys. Lett. 105, 062402 (2014). https://doi.org/10.1063/1.4892889

    Article  CAS  Google Scholar 

  22. T. Zhang, H. Su, X. Tang, H. Zhang, Y. Jing, Y. Li, Low loss Co2Z hexaferrite with matched permeability and permittivity in HF and VHF bands. J. Magn. Magn. Mater. 382, 283–287 (2015). https://doi.org/10.1016/j.jmmm.2015.01.086

    Article  CAS  Google Scholar 

  23. T. Nakamura, E. Hankui, Control of high-frequency permeability in polycrystalline (Ba,Co)-Z-type hexagonal ferrite. J. Magn. Magn. Mater. 257, 158–164 (2003). https://doi.org/10.1016/S0304-8853(02)00114-2

    Article  CAS  Google Scholar 

  24. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater. Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  25. T. Tsutaoka, A. Tsurunaga, N. Koga, Permeability and permittivity spectra of substituted barium ferrites BaFe12−x(Ti0.5Co0.5)xO19 (x = 0 to 5). J. Magn. Magn. Mater. 399, 64–71 (2016). https://doi.org/10.1016/j.jmmm.2015.09.032

    Article  CAS  Google Scholar 

  26. Y. Peng, X. Wu, Z. Chen, W. Liu, F. Wang, X. Wang, Z. Feng, Y. Chen, V.G. Harris, BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications. J. Alloys Compd. 630, 48–53 (2015). https://doi.org/10.1016/j.jallcom.2015.01.026

    Article  CAS  Google Scholar 

  27. Z.W. Li, G.Q. Lin, Y.P. Wu, L.B. Kong, High-frequency magnetic properties and attenuation characteristics for barium ferrite composites. J. Magn. Magn. Mater. 321, 734–737 (2009). https://doi.org/10.1016/j.jmmm.2008.11.038

    Article  CAS  Google Scholar 

  28. X. Huo, H. Su, Y. Wang, Y. Li, X. Tang, Effects of Zn substitution on high-frequency properties of Ba1.5Sr1.5Co2−xZnxFe22O41 hexaferrites. Ceram. Int. 47(12), 17120–17127 (2021). https://doi.org/10.1016/j.ceramint.2021.03.021

    Article  CAS  Google Scholar 

  29. Z. Zheng, H. Zhang, J.Q. Xiao, L. Jia, F. Bai, Introduction of NiZn-Ferrite Into Co2Z-ferrite and effects on the magnetic and dielectric properties. IEEE Trans. Magn. 48(11), 3618–3621 (2012). https://doi.org/10.1109/TMAG.2012.2201450

    Article  CAS  Google Scholar 

  30. Z. Yue, J. Zhou, L. Li, Z. Gui, Effects of MnO2 on the electromagnetic properties of NiCuZn ferrites prepared by sol-gel auto-combustion. J. Magn. Magn. Mater. 233, 224–229 (2001). https://doi.org/10.1016/S0304-8853(01)00200-1

    Article  CAS  Google Scholar 

  31. H. Su, X. Tang, H. Zhang, Ruan ci tie yang ti qi jian she ji ji ying yong (in Chinese), 1st edn. (Beijing Science Press, Beijing, 2015), pp. 26–29

    Google Scholar 

  32. Q. Xia, H. Su, G. Shen, T. Pan, T. Zhang, H. Zhang, X. Tang, Investigation of low loss Z-type hexaferrites for antenna applications. J. Appl. Phys. 111, 063921 (2012). https://doi.org/10.1063/1.3699048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (Grant No. 2021JDTD0026), Jiangxi Innovative Talent Program, Guizhou Basic (Grant No. 2021305), and Jiangxi Guochuang & UESTC Joint R & D Center Program (Grant No. H04W190371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxun Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, Y., Li, S. et al. Co2Z hexaferrites with equivalent permeability and permittivity in UHF band. J Mater Sci: Mater Electron 33, 8226–8232 (2022). https://doi.org/10.1007/s10854-022-07973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07973-9

Navigation