Skip to main content
Log in

Micro-structure and microwave dielectric properties of Cerium oxide with Nd/Y diatomic substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cerium oxide (CeO2) ceramics with neodymium/yttrium (Nd/Y) diatomic substitution had been prepared, aiming at exploring the relationships between structures and microwave dielectric properties. After substitution, the CeO2 ceramics were still indexed as a pure CeO2 phase belonged to Fm-3 m (225) group, meanwhile, the Nd/Y ions showed disorderly distributions to occupy the position of cerium atoms (Ce) since no superlattice diffraction peak was detected. The cell volume of the substituted CeO2 ceramics changed regularly with the changing ratio of Nd/Y ions owing to the different ion radii of Nd and Y ions. The surface structure had been characterized by grain size, which dropped sharply when the atomic ratio of Nd/Y changed from 4:1 to 3:2, and then tended to level off. The dielectric constant (εr) of the ion-substituted CeO2 ceramics, which was mainly affected by porosity, polarizability, and defects, changed from 20.78 to 22.02 with different Nd/Y ratios. The quality factor (Q × f) values of the substituted CeO2 ceramics, which determined by packing fraction, grain size, and relative density, increased from 40,000 GHz to 77,000 GHz when the Nd/Y ratio changed from 4:1 to 1:4. The temperature coefficient of resonance frequency (τf) of the substituted CeO2 ceramics increased with the increasing of Y ion ratio, and the variation trend was consistent with the trend of crystal lattice energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Zhou, H.H. Guo, M.SFu.X.G. Yao, H.X. Lin, W.F. Liu, L.X. Pang, C. Singh, S. Traukhanov, A. Trukhanov, I.M. Reaney, Anomalous dielectric behavior during the monoclinic to tetragonal phase transition in La(Nb0.9V0.1)O4. Inorg. Chem. Front. 8, 156–163 (2021)

    Article  CAS  Google Scholar 

  2. T.O. Abreu, R.F. Abreu, F.F. Garmo, W.V. Soussa, H.O. Barros, J.E.V. Morais, J.P.G. Nascimento, M.A.S. Silva, S. Trukhanov, A. Trukhanov, L. Panina, G. Singh, A.S.B. Sombra, A novel ceramic matrix composite based on YNbO4-TiO2 for microwave applications. Ceram. Int. 47, 15424–15432 (2021)

    Article  CAS  Google Scholar 

  3. H.C. Yang, S.R. Zhang, H.Y. Yang, Q.Y. Wen, Q. Yang, L. Gui, Q. Zhao, E.Z. Li, The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 10, 885–932 (2021)

    Article  CAS  Google Scholar 

  4. L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102, 2278–2282 (2019)

    Article  CAS  Google Scholar 

  5. J.Y. Deng, W.S. Xia, W.H. Zhang, T.L. Tang, Y. Wang, J.L. Du, Optimization of sintering behavior and microwave dielectric properties of LaNbO4 ceramics with NiO/CoO additive. J. Alloy. Compd. 859, 158378 (2021)

    Article  CAS  Google Scholar 

  6. D.H. Kim, S.K. Lim, C. An, The microwave dielectric properties of xTiO2(1–x)⋅CeO2 ceramics. Mater. Lett. 52, 240–243 (2002)

    Article  CAS  Google Scholar 

  7. N. Santha, M.T. Sebastian, P. Mohanan, N.M. Alford, K. Sarma, R.C. Pullar, Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range. J. Am. Ceram. Soc. 87, 1233–1237 (2004)

    Article  CAS  Google Scholar 

  8. P.S. Anjana, T. Joseph, M.T. Sebastian, Microwave dielectric properties of (1–x)CeO2-xRE2O3 (RE=La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb and Y) (0≤x≤1) ceramics. J. Alloy. Compd. 490, 208–213 (2010)

    Article  CAS  Google Scholar 

  9. Y. Wang, T.L. Tang, J.Y. Deng, M.X. Li, L.W. Shi, W.S. Xia, Sintering characteristics and microwave dielectric properties of a new temperature-stable ceramic of Ce0.5Sm0.5O1.75. J. Mater. Sci. Mater Electron. 31, 19130–19135 (2020)

    Article  Google Scholar 

  10. Y. Wang, T.L. Tang, M.X. Li, L.W. Shi, W.S. Xia, Ce0.75Y0.25O1.875: New temperature-stable microwave dielectric ceramics with high Q values for microwave application. Ceram. Int. 46, 6984–6986 (2020)

    Article  CAS  Google Scholar 

  11. B.W. Hakki, P.D. Coleman, A Dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  12. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave Insulators. IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  13. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Article  CAS  Google Scholar 

  14. L.T. Liu, Y.G. Chen, Z.B. Feng, H.T. Wu, X.Y. Zhang, Crystal structure, infrared spectra, and microwave dielectric properties of the EuNbO4 ceramics. Ceram. Int. 47, 4321–4326 (2021)

    Article  CAS  Google Scholar 

  15. X. Zhou, L.T. Liu, J.J. Sun, N.K. Zhang, H.Z. Sun, H.T. Wu, W.H. Tao, Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 10, 778–789 (2021)

    Article  CAS  Google Scholar 

  16. Y. Wang, T.L. Tang, J.T. Zhang, W.S. Xia, L.W. Shi, Preparation and microwave dielectric properties of new low-loss NiZrTa2O8 ceramics. J. Alloy. Compd. 778, 576–578 (2019)

    Article  CAS  Google Scholar 

  17. C. Feng, X. Zhou, B.J. Tao, H.T. Wu, S.F. Huang, Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1-x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency. J. Adv. Ceram. 11, 392–402 (2022)

    Article  CAS  Google Scholar 

  18. H.R. Tian, J.J. Zheng, L.T. Liu, H.T. Wu, H. Kimura, Y.Z. Lu, Z.X. Yue, Structure characteristics and microwave dielectric properties of Pr2(Zr1−xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. J. Mater. Sci. Technol. 116, 121–129 (2022)

    Article  Google Scholar 

  19. K.M. Manu, C. Karthik, R. Ubic, M.T. Sebastian, Effect of Ca2+ substitution on the structure, microstructure, and microwave dielectric properties of Sr2Al2SiO7 ceramic. J. Am. Ceram. Soc. 96, 3842–3848 (2013)

    Article  CAS  Google Scholar 

  20. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  21. J.M. Li, C.M. Zhang, H. Liu, T. Qiu, C.G. Fan, Structure, morphology, and microwave dielectric properties of SmAlO3 synthesized by stearic acid route. J. Adv. Ceram. 9, 558–566 (2020)

    Article  CAS  Google Scholar 

  22. J.J. Zheng, Y.H. Liu, B.J. Tao, Q. Zhang, H.T. Wu, X.Y. Zhang, Crystal structure and optmised microwave dielectric properties of Ce2(Zr1-xTix)3(MoO4)9 solid solutions. Ceram. Int. 47, 5624–5630 (2021)

    Article  CAS  Google Scholar 

  23. B.J. Tao, W.F. Wang, H.Y. Liu, T.X. Du, H.T. Wu, C.F. Xing, D.Z. Wang, Y.P. Zhang, Low-temperature sintering LiF-doped Li4Mg3[Ti0.6(Mg1/3Nb2/3)0.4]2O9 microwave dielectric ceramics for LTCC applications. Ceram. Int. 47, 2584–2590 (2021)

    Article  CAS  Google Scholar 

  24. J. Bao, J.L. Du, L.T. Liu, H.T. Wu, Y.Y. Zhou, Z.X. Yue, A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceram. Int. 48, 784–794 (2022)

    Article  CAS  Google Scholar 

  25. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Euro. Ceram. Soc. 30, 1731–1736 (2010)

    Article  CAS  Google Scholar 

  26. E.S. Kim, B.S. Chun, K.H. Yoon, Dielectric properties of [Ca1-x(Li1/2Nd1/2)x]1-yZnyTiO3 ceramics at microwave frequencies. Mater. Sci. Eng. B 99, 93–97 (2003)

    Article  Google Scholar 

  27. L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids. J. Am. Chem. Soc. 122, 632–638 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the projects from the Fundamental Research Funds for the Central Universities under Grant No. 2020ZDPYMS12.

Funding

This study was funded by the Fundamental Research Funds for the Central Universities (Grant No. 2020ZDPYMS12).

Author information

Authors and Affiliations

Authors

Contributions

Wang-Suo Xia designed the study. WSX, WHZ, YW, MXL, LWS, HTW performed the experiments and analyzed results. WSX and WHZ wrote the manuscript. WSX, YW, and HTW discussed the results and commented on the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wang-Suo Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, WS., Zhang, WH., Wang, Y. et al. Micro-structure and microwave dielectric properties of Cerium oxide with Nd/Y diatomic substitution. J Mater Sci: Mater Electron 33, 8027–8034 (2022). https://doi.org/10.1007/s10854-022-07953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07953-z

Navigation