Skip to main content
Log in

Grass-derived carbon nanodots as a fluorescent-sensing platform for label-free detection of Cu (II) ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, carbon nanodots (CNDs) were facilely synthesized using grass as a carbon source by the reflux method. The as-synthesized CNDs were well characterized by UV–Vis spectroscopy, Fluorescence spectroscopy, XRD, FTIR, and SEM. The characterization results revealed that grass-derived CNDs showed strong absorption and fluorescence emission peak and are amorphous with the surface rich in carboxyl and hydroxyl groups. The average particle size is 20 nm with a narrow size distribution. The CNDs showed excellent fluorescent sensitivity and selectivity for the detection of Cu2+ ions with a limit of detection as low as 0.89 μM with a linear detection range of 1–20 μM offering a novel sensing platform for Cu2+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. S.-P. Wu, R.-Y. Huang, K.-J. Du, Dalt. Trans. 24, 4735 (2009)

    Article  Google Scholar 

  2. A. Katner, K.J. Pieper, Y. Lambrinidou, K. Brown, C.-Y. Hu, H.W. Mielke, M.A. Edwards, Environ. Justice 9, 109 (2016)

    Article  Google Scholar 

  3. J. Liu, Y. Lu, J. Am. Chem. Soc. 129, 9838 (2007)

    Article  CAS  Google Scholar 

  4. R. Hardman, Environ. Health Perspect. 114, 165 (2006)

    Article  Google Scholar 

  5. J.C.G. Esteves da Silva, H.M.R. Gonçalves, TrAC Trends Anal. Chem. 30, 1327 (2011)

    Article  CAS  Google Scholar 

  6. J. Wang, R. Sheng Li, H. Zhi Zhang, N. Wang, Z. Zhang, C.Z. Huang, Biosens. Bioelectron. 97, 157 (2017)

    Article  CAS  Google Scholar 

  7. Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Anal. Chem. 84, 6220 (2012)

    Article  CAS  Google Scholar 

  8. C. Yuan, B. Liu, F. Liu, M.-Y. Han, Z. Zhang, Anal. Chem. 86, 1123 (2014)

    Article  CAS  Google Scholar 

  9. X. Wang, Z. Yang, Z. San, X. Pen, Q. Huang, Sci. China Chem. 53, 1718 (2010)

    Article  CAS  Google Scholar 

  10. X. Michalet, F.F. Pinaud, L.A. Bentolila, T.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)

    Article  CAS  Google Scholar 

  11. N. Myung, Z. Ding, A.J. Bard, Nano Lett. 2, 1315 (2002)

    Article  CAS  Google Scholar 

  12. M. Han, X. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631 (2001)

    Article  CAS  Google Scholar 

  13. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Nat. Biotechnol. 21, 47 (2003)

    Article  CAS  Google Scholar 

  14. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, D.-W. Pang, Chem. Commun. 41, 5116 (2008)

    Article  Google Scholar 

  15. X. Wang, L. Cao, F. Lu, M.J. Meziani, H. Li, G. Qi, B. Zhou, B.A. Harruff, F. Kermarrec, Y.-P. Sun, Chem. Commun. (2009). https://doi.org/10.1039/b906252a

    Article  Google Scholar 

  16. L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, J. Am. Chem. Soc. 129, 11318 (2007)

    Article  CAS  Google Scholar 

  17. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, J. Am. Chem. Soc. 128, 7756 (2006)

    Article  CAS  Google Scholar 

  18. N. Chaudhary, P.K. Gupta, S. Eremin, P.R. Solanki, J. Environ. Chem. Eng. 8, 103720 (2020)

    Article  CAS  Google Scholar 

  19. L. Liu, H. Gong, D. Li, L. Zhao, J. Nanosci. Nanotechnol. 18, 5327 (2018)

    Article  CAS  Google Scholar 

  20. T. Boobalan, M. Sethupathi, N. Sengottuvelan, P. Kumar, P. Balaji, B. Gulyás, P. Padmanabhan, S.T. Selvan, A. Arun, A.C.S. Appl, Nano Mater. 3, 5910 (2020)

    CAS  Google Scholar 

  21. M. Zahid, J. Li, A. Ismail, F. Zaera, Y. Zhu, Catal. Sci. Technol. 11, 2433 (2021)

    Article  CAS  Google Scholar 

  22. J. Li, M. Zahid, W. Sun, X. Tian, Y. Zhu, Appl. Surf. Sci. 528, 146983 (2020)

    Article  CAS  Google Scholar 

  23. Y.-H. Chan, Y. Jin, C. Wu, D.T. Chiu, Chem. Commun. 47, 2820 (2011)

    Article  CAS  Google Scholar 

  24. X. Zheng, S. Ren, L. Wang, Q. Gai, Q. Dong, W. Liu, J. Photochem. Photobiol. A Chem. 417, 113359 (2021)

    Article  CAS  Google Scholar 

  25. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Chem. Rev. 97, 1515 (1997)

    Article  Google Scholar 

  26. Z. Li, L. Zhang, L. Wang, Y. Guo, L. Cai, M. Yu, L. Wei, Chem. Commun. 47, 5798 (2011)

    Article  CAS  Google Scholar 

  27. S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Adv. Mater. 24, 2037 (2012)

    Article  CAS  Google Scholar 

  28. S. Guo, S. Lu, P. Xu, Y. Ma, L. Zhao, Y. Zhao, W. Gu, M. Xue, Dalt. Trans. 45, 7665 (2016)

    Article  CAS  Google Scholar 

  29. X.W. Tan, A.N.B. Romainor, S.F. Chin, S.M. Ng, J. Anal. Appl. Pyrolysis 105, 157 (2014)

    Article  CAS  Google Scholar 

  30. X. Ma, Y. Dong, H. Sun, N. Chen, Mater. Today Chem. 5, 1 (2017)

    Article  CAS  Google Scholar 

  31. Z. Qing, L. Zhu, S. Yang, Z. Cao, X. He, K. Wang, R. Yang, Biosens. Bioelectron. 78, 471 (2016)

    Article  CAS  Google Scholar 

  32. C. Boonmee, T. Noipa, T. Tuntulani, W. Ngeontae, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 169, 161 (2016)

    Article  CAS  Google Scholar 

  33. P. Nurerk, P. Kanatharana, O. Bunkoed, Luminescence 31, 515 (2016)

    Article  CAS  Google Scholar 

  34. M. Chen, X. Liu, J. Fluoresc. 31, 1153 (2021)

    Article  CAS  Google Scholar 

  35. X. Ma, S. Lin, Y. Dang, Y. Dai, X. Zhang, F. Xia, Anal. Bioanal. Chem. 411, 6645 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant or fund.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: HK; Formal analysis and investigation: MFK; Conceptualization and methodology: AI; Writing—review and editing: MZ; Software: BA; Resources: MI; Supervision: AI and MZ.

Corresponding authors

Correspondence to Muhammad Zahid or Ahmed Ismail.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, H., Khan, M.F., Ahmad, B. et al. Grass-derived carbon nanodots as a fluorescent-sensing platform for label-free detection of Cu (II) ions. J Mater Sci: Mater Electron 33, 5626–5634 (2022). https://doi.org/10.1007/s10854-022-07749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07749-1

Navigation