Skip to main content
Log in

Study on the homogeneous design of ultra-thin protonated g-C3N4 composite TiO2 hollow spheres and its photocatalytic performance for RHB

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, P-g-C3N4/TiO2 (the protonated g-C3N4 is noted as P-g-C3N4) heterojunction photocatalytic materials with hollow sphere structure were synthesized mainly by high-temperature calcination and secondary hydrothermal methods. To obtain highly efficient heterojunction catalytic materials with more uniform surface compounding, we protonated and exfoliated ultrasonically the obtained g-C3N4 before compounding further, which changed its morphology while retaining its semiconductor properties and optical band gap unchanged, and finally obtained the ultra-thin nanoflake structures. On this basis, an optimal proportion of the highest catalytic activity between these two substances was explored by degrading RHB. It was found that the highest catalytic activity of the complexes was achieved at 110 min with a weight ratio of 0.1 of P-g-C3N4 to TiO2 after protonating under the same conditions, and complete degradation was reached at 110 min. Afterward, to further investigate its physicochemical properties, we made various characterizations and proposed a suitable catalytic mechanism of Z-scheme regarding its excellent catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. M.M. Nabi, J.J. Wang, M. Meyer, M.N. Croteau, N. Ismail, M. Baalousha, Sci. Total Environ. 753, 142017 (2021)

    Article  CAS  Google Scholar 

  2. S. Bai, W.J. Yin, L. Wang, Z.Q. Li, Y.J. Xiong, RSC Adv. 6, 57446–57463 (2016)

    Article  CAS  Google Scholar 

  3. S. Rawalekar, T. Mokari, Adv. Energy Mater. 3, 12–27 (2013)

    Article  CAS  Google Scholar 

  4. T.L. Thompson, J.T. Yates, Chem. Rev. 106, 4428–4453 (2006)

    Article  CAS  Google Scholar 

  5. Y. Zhang, X.J. Xu, ACS Omega 5, 15344–15352 (2020)

    Article  CAS  Google Scholar 

  6. R. Fiorenza, A. di Mauro, M. Cantarella, C. Iaria, E.M. Scalisi, M.V. Brundo, A. Gulino, L. Spitaleri, G. Nicotra, S. Dattilo, S.C. Carroccio, V. Privitera, G. Impellizzeri, Chem. Eng. J. 379, 122309 (2019)

    Article  Google Scholar 

  7. V. Kumaravel, S. Rhatigan, S. Mathew, J. Bartlett, M. Nolan, S.J. Hinder, P.K. Sharma, A. Singh, J.A. Byrne, J. Harrison, S.C. Pillai, J. Phys. Chem. C 123, 21083–21096 (2019)

    Article  CAS  Google Scholar 

  8. F. Wang, Y.J. Jiang, D.J. Lawes, G.E. Ball, C.F. Zhou, Z.W. Liu, R. Amal, ACS Catal. 5, 3924–3931 (2015)

    Article  CAS  Google Scholar 

  9. J.K. Zhang, Z.B. Yu, Z. Gao, H.B. Ge, S.C. Zhao, C.Q. Chen, S. Chen, X.L. Tong, M.H. Wang, Z.F. Zheng, Y. Qin, Angew. Chem. Int. Ed. Engl. 55, 1–6 (2016)

    Article  CAS  Google Scholar 

  10. A. Li, T. Wang, X.X. Chang, W.T. Cai, P. Zhang, J.J. Zhang, J.L. Gong, Chem. Sci. 7, 890–895 (2016)

    Article  CAS  Google Scholar 

  11. Q.Z. Wang, G.X. Yun, Y. Bai, N. An, Y.T. Chen, R.F. Wang, Z.Q. Lei, W.F. Shangguan, Int. J. Hydrogen Energy 39, 13421–13428 (2014)

    Article  CAS  Google Scholar 

  12. X. Zhou, J. Jin, X.J. Zhu, J. Huang, J.G. Yu, W.Y. Wong, W.K. Wong, J. Mater. Chem. A 4, 5282–5287 (2016)

    Article  CAS  Google Scholar 

  13. J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, Adv. Energy Mater. 8, 1701503 (2017)

    Article  Google Scholar 

  14. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397–10401 (2009)

    Article  CAS  Google Scholar 

  15. H. Xiao, T. Wang, J. Mater. Sci. Mater. Electron. 32, 5104–5115 (2021)

    Article  CAS  Google Scholar 

  16. L. Ouyang, Y. Zhang, Y. Wang, X.X. Wang, S.J. Yuan, Ind. Eng. Chem. Res. 60, 7003–7013 (2021)

    Article  CAS  Google Scholar 

  17. J.X. Ni, W. Wang, D.G. Liu, Q. Zhu, J.L. Jia, J.Y. Tian, Z.Y. Li, X. Wang, Z.P. Xing, J. Hazard. Mater. 408, 124432 (2021)

    Article  CAS  Google Scholar 

  18. S. Gahlot, F. Dappozze, S. Mishra, C. Guillard, J. Environ. Chem. Eng. 9, 105587 (2021)

    Article  CAS  Google Scholar 

  19. J. Wang, G.H. Wang, X. Wang, Y. Wu, Y.R. Su, H. Tang, Carbon 149, 618–626 (2019)

    Article  CAS  Google Scholar 

  20. Y.J. Zhang, A. Thomas, M. Antonietti, X.C. Wang, J. Am. Chem. Soc. 131, 50–51 (2009)

    Article  CAS  Google Scholar 

  21. C.J. Wang, Y.L. Zhao, H. Xu, Y.F. Li, Y.C. Wei, J. Liu, Z. Zhao, Appl. Catal. B 263, 118314 (2020)

    Article  CAS  Google Scholar 

  22. H. Wei, W.A. McMaster, J.Z.Y. Tan, L. Cao, D.H. Chen, R.A. Caruso, J. Phys. Chem. C 121, 22114–22122 (2017)

    Article  CAS  Google Scholar 

  23. Y.X. Fang, W.X. Huang, S.Y. Yang, X.F. Zhou, C.Y. Ge, Q.G. Gao, Y.P. Fang, S.G. Zhang, Int. J. Hydrogen Energy 45, 17378–17387 (2020)

    Article  CAS  Google Scholar 

  24. P. Chen, J. Mater. Sci. Mater. Electron. 32, 24845–24855 (2021)

    Article  CAS  Google Scholar 

  25. P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Carbon 137, 174–187 (2018)

    Article  CAS  Google Scholar 

  26. T. Tang, T. Wang, J. Mater. Sci. Mater. Electron. 30, 10944–10952 (2019)

    Article  CAS  Google Scholar 

  27. R.R. Hao, G.H. Wang, H. Tang, L.L. Sun, C. Xu, D. Han, Appl. Catal. B 187, 47–58 (2016)

    Article  CAS  Google Scholar 

  28. J.Q. Pan, Z.J. Dong, B.B. Wang, Z.Y. Jiang, C. Zhao, J.J. Wang, C.S. Song, Y.Y. Zheng, C.R. Li, Appl. Catal. B 242, 92–99 (2019)

    Article  CAS  Google Scholar 

  29. H. Liu, D.Q. Yu, T.B. Sun, H.Y. Du, W.T. Jiang, Y. Muhammad, L. Huang, Appl. Surf. Sci. 473, 855–863 (2018)

    Article  Google Scholar 

  30. C.X. Li, Z.R. Lou, Y.C. Yang, Y.C. Wang, Y.F. Lu, Z.Z. Ye, L.P. Zhu, Langmuir 35, 779–786 (2019)

    Article  CAS  Google Scholar 

  31. X.F. Chen, Y.S. Jun, K. Takanabe, K. Maeda, K. Domen, X.Z. Fu, M. Antonietti, X.C. Wang, Chem. Mater. 21, 4093–4095 (2009)

    Article  CAS  Google Scholar 

  32. A. Vinu, Adv. Funct. Mater. 18, 816–827 (2008)

    Article  CAS  Google Scholar 

  33. J. Jia, Y.M. Wang, M.L. Xu, M.L. Qi, Y.L. Wu, G. Zhao, J. Sol-Gel Sci. Technol. 93, 123–130 (2019)

    Article  Google Scholar 

  34. L.Y. Lu, G.H. Wang, M. Zou, J. Wang, J. Li, Appl. Surf. Sci. 441, 1012–1023 (2018)

    Article  CAS  Google Scholar 

  35. O. Elbanna, M. Fujitsuka, T. Majima, ACS Appl. Mater. Interfaces 9, 34844–34854 (2017)

    Article  CAS  Google Scholar 

  36. Y. Zhang, Z.P. Xing, X.F. Liu, Z.Z. Li, X.Y. Wu, J.J. Jiang, M. Li, Q. Zhu, W. Zhou, ACS Appl. Mater. Interfaces 8, 26851–26859 (2016)

    Article  CAS  Google Scholar 

  37. X.J. Bai, J. Li, C.B. Cao, Appl. Surf. Sci. 256, 2327–2331 (2010)

    Article  CAS  Google Scholar 

  38. P. Kumar, P. Kar, A.P. Manuel, S. Zeng, U.K. Thakur, K.M. Alam, Y. Zhang, R. Kisslinger, K. Cui, G.M. Bernard, V.K. Michaelis, K. Shankar, Adv. Opt. Mater. 8, 1901275 (2019)

    Article  Google Scholar 

  39. Y. Choi, H.I. Kim, G.H. Moon, S. Jo, W. Choi, ACS Catal. 6, 821–828 (2016)

    Article  CAS  Google Scholar 

  40. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B 230, 260–268 (2018)

    Article  CAS  Google Scholar 

  41. A. Toghan, H.M. Abd-El-Lateef, K.K. Taha, A. Modwi, Diamond Relat. Mater. 118, 108491 (2021)

    Article  CAS  Google Scholar 

  42. G.L. Fang, M.Y. Li, H.F. Shen, S.L. Yang, J. Israr, Mater. Sci. Semicond. Process. 121, 105374 (2021)

    Article  CAS  Google Scholar 

  43. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, B. Sahoo, ACS Appl. Nano Mater. 3, 8618–8631 (2020)

    Article  CAS  Google Scholar 

  44. X.H. Yu, J. Xie, Q.Q. Liu, H.L. Dong, Y.Y. Li, J. Colloid Interface Sci. 593, 133–141 (2021)

    Article  CAS  Google Scholar 

  45. J. Wang, G.H. Wang, B. Cheng, J.G. Yu, J.J. Fan, Chin. J. Catal. 42, 56–68 (2021)

    Article  CAS  Google Scholar 

  46. M. Nemiwal, T.C. Zhang, D. Kumar, Sci. Total Environ. 767, 144896 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TW and HD were the experimental designers and executors of the experimental study, completed the data analysis, and wrote the first draft of the paper; HX, TS, and JX were involved in the experimental design and analysis of the experimental results; ZZ and HB are the conceptualizers and leaders of the project, directing the experimental design, data analysis, and paper writing and revision; SL and HZ were involved in the analysis and collation of the literature. All authors read and agreed on the final text.

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

The author declares that this article does not involve any conflict of interest and claims that none of the material in the paper has been published or is under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ding, H., Xiao, H. et al. Study on the homogeneous design of ultra-thin protonated g-C3N4 composite TiO2 hollow spheres and its photocatalytic performance for RHB. J Mater Sci: Mater Electron 33, 4482–4496 (2022). https://doi.org/10.1007/s10854-021-07639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07639-y

Navigation