Skip to main content
Log in

A facile interface engineering method to improve the performance of FTO/ZnO/CsPbI3−xBrx (x < 1)/C solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hole-transport-layer (HTL)-free, carbon-based all-inorganic perovskite solar cells (PSCs) are attracting a great interest owing to a low cost and an advanced stability in ambient environment. However, the photoelectric conversion efficiency (PCE) for this kind of PSCs was far lower than expected. Interface engineering is a promising method to enhance PSCs efficiency through improving the interface charge transfer. In our work, we introduce a simple, clean interfacial engineering method of deionized water (DI) spin-coating to treat the F-doped SnO2 (FTO). And then ZnO was spin-coated on the treated FTO. A compact and highly uniform ZnO film was obtained. Excess CsBr was added into CsPbI3 precursor solution to obtain stable black phase CsPbI3 at a low temperature (120 °C). HTL-free, carbon-based all-inorganic CsPbI3−xBrx (x < 1) perovskite solar cells are fabricated with the structure of FTO/DI/ZnO/CsPbI3−xBrx (x < 1)/C. After DI treatment, the defect density of device is greatly decreased so that carriers transport at the interface is accelerated and the charge recombination is effectively suppressed. The champion PCE has been improved from 10.95 to 12.39%, obtaining an improved PCE about 13%, which is the highest PCE for HTL-free, carbon-based all-inorganic PSCs until now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article. The authors declare that the data supporting the findings of this study are available within the article. Data sharing encouraged and statements of data availability required.

References

  1. J. Wang, H.Y. Hou, Y.Q. Li, J.X. Tang, Recent Advances in Interface Engineering of All-Inorganic Perovskite Solar Cell. Nanoscale 12, 17149–17164 (2020)

    Article  CAS  Google Scholar 

  2. M. Yoon, H. Min, J.B. Kim, G. Kim, K.S. Lee, S.I. Seok, Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells. Joule 5(1), 183–196 (2021)

    Article  CAS  Google Scholar 

  3. R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, M.T. Horantner, M.B. Johnston, A.A. Haghighirad, D.T. Moore, H.J. Snaith, Bandgap tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6(8), 1502458 (2016)

    Article  Google Scholar 

  4. X.M. Chang, J.J. Fang, Y.Y. Fan, T. Luo, H. Su, Y.L. Zhang, J. Lu, T. Leonidas, T.D. Anthopoulos, S.Z. Liu, K. Zhao, Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy. Adv. Mater. 32(40), 2001243 (2020)

    Article  CAS  Google Scholar 

  5. W. Ahmad, J. Khan, G. Niu, T. Jiang, Inorganic CsPbI3 perovskite-based solar cells: a choice for a tandem device. PRL Sol. 1(7), 1700048 (2017)

    Google Scholar 

  6. G. Eperon, G. Paternò, R. Sutton, A. Zampetti, A. Haghighirad, F. Cacialli, H. Snaith, Inorganic cesium lead iodide perovskite solar cells. J. Mater. Chem. A. 3, 19688–19695 (2015)

    Article  CAS  Google Scholar 

  7. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H.Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014)

    Article  CAS  Google Scholar 

  8. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, All-inorganic perovskite solar cells. J.Am.Chem.Soc 138(49), 15829–15832 (2016)

    Article  CAS  Google Scholar 

  9. C. Wang, J. Zhang, L. Jiang, L. Gong, H. Xie, Y. Gao, H. He, Z. Fang, J. Fan, Z. Chao, All-inorganic,hole-transporting-layer-free, carbon-based CsPbIBr2 planar solar cells with ZnO as electron-transporting materials. J. Alloy. Compd. 817(15), 152768 (2020)

    Article  CAS  Google Scholar 

  10. W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, Band alignment engineering towards 10.71%-efficiency carbon-based, all-inorganic planar CsPbIBr2 perovskite solar cells. Chem. Sus. Chem. 12(10), 2318–2325 (2019)

    Article  CAS  Google Scholar 

  11. X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy 56, 184–195 (2019)

    Article  CAS  Google Scholar 

  12. S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, H. Chen, Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%. iScience 15(31), 156–164 (2019)

    Article  CAS  Google Scholar 

  13. J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L.K. Ono, Y. Qi, Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes. Adv. Energy Mater. 8(20), 1800504 (2018)

    Article  Google Scholar 

  14. C. Wang, J. Zhang, J. Duan, L. Gong, J. Wu, L. Jiang, C. Zhou, H. Xie, Y. Gao, H. He, J. Lu, Z. Fang, B. Lu, All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr planar perovskite solar cells by a two-step temperature-control annealing process. Mat. Sci. Semicon. Proc. 108(15), 104870 (2020)

    Article  CAS  Google Scholar 

  15. J. Zhang, C. Wang, H. Fu, L. Gong, H. He, Z. Fang, C. Zhou, J. Chen, Z. Chao, J. Fan, Low-temperature preparation achieving 10.95%-efficiency of hole-free and carbon-based all-inorganic CsPbI3 perovskite solar cells. J. Alloy. Compd. 862(5), 158454 (2021)

    Article  CAS  Google Scholar 

  16. J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594V. Adv. Energy Mater. 8(31), 1802346 (2018)

    Article  Google Scholar 

  17. C. Dong, X. Han, W. Li, Q. Qiu, J. Wang, Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell. Nano Energy 59, 553–559 (2019)

    Article  CAS  Google Scholar 

  18. L. Gong, J.S. Zhang, C. Wang, H. Fu, Y.F. Lu, J.L. Chen, J.C. Fan, Z.S. Chao, Study on the Ion Substitution Mechanism of CsPbIBr2 Films Prepared by a Drop-Coating Method. ACS Appl. Energy Mater. 4(5), 4686–4694 (2021)

    Article  CAS  Google Scholar 

  19. F. Bu, B. He, Y. Ding, X. Li, X. Sun, J. Duan, Y. Zhao, H. Chen, Q. Tang, Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cell. Sol. Energ. Mat. Sol. C 205, 110267 (2020)

    Article  CAS  Google Scholar 

  20. H.Y. Chen, F.G. Zhou, Z.W. Jin, Interface Engineering, the Trump-Card for CsPbX3 (X= I, Br) Perovskite Solar Cells Development. Nano Energy 79, 105490 (2021)

    Article  CAS  Google Scholar 

  21. Y. Wang, M.I. Dar, L.K. Ono, T.Y. Zhang, M. Kan, Y.W. Li, L.J. Zhang, X.T. Wang, Y.G. Yang, X.Y. Gao, Y.B. Qi, G. Michael, Y.X. Zhao, Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science 365(6453), 591–595 (2019)

    Article  CAS  Google Scholar 

  22. T.T. Liu, J. Zhang, X. Wu, H.B. Liu, F.Z. Li, X. Deng, F. Lin, X.S. Li, Z.L. Zhu, K. Alex, Y. Jen, Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. RRL Sol. 4(9), 200205 (2020)

    Article  Google Scholar 

  23. K.Q. Chen, W. Jin, Y.P. Zhang, T.Q. Yang, P. Reiss, Q.H. Zhong, U. Bach, Q.T. Li, Y.W. Wang, H. Zhang, Q.L. Bao, Y.L. Liu, High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering. J. Am. Chem. Soc. 142(8), 3775–3783 (2020)

    Article  CAS  Google Scholar 

  24. S. Akin, Y. Altintas, E. Mutlugun, S. Sonmezoglu, Cesiumelead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% effiffifficiency. Nano Energy 60, 557–566 (2019)

    Article  CAS  Google Scholar 

  25. S. Akin, F. Sadegh, S. Turan, S. Sonmezoglu, Inorganic CuFeO2 Delafossite Nanoparticles as Effffective Hole Transport Materials for Highly Effiffifficient and Long-Term Stable Perovskite Solar Cells, ACS Appl. Mater. Interfaces 11, 45142–45149 (2019)

    Article  CAS  Google Scholar 

  26. S. Akin, E. Akman, S. Sonmezoglu, FAPbI3-Based Perovskite Solar Cells Employing Hexyl-Based Ionic Liquid with an Efficiency Over 20% and Excellent Long-Term Stability. Adv. Func. Mater. 30(28), 2002964 (2020)

    Article  CAS  Google Scholar 

  27. S. Sonmezoglu, S. Akin, Suppression of the interface-dependent nonradiative recombination by using 2- methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy 76, 105127 (2020)

    Article  CAS  Google Scholar 

  28. Z. Li, J. Xu, S. Zhou, B. Zhang, X. Liu, S. Liu, S. Dai, J. Yao, CsBr-Induced Stable CsPbI3–xBrx (x<1) Perovskite Films at Low Temperature for Highly Efficient Planar Heterojunction Solar Cells. ACS Appl Mater Interfaces 10(44), 38183–38192 (2018)

    Article  CAS  Google Scholar 

  29. J.S. Wan, L. Tao, Q. Wang, K. Zhang, J. Xie, J. Zhang, H. Wang, A universal method for hysteresis-free and stable perovskite solar cells using water pre-treatment. Chem. Eng.J. 403(1), 126435 (2021)

    Article  CAS  Google Scholar 

  30. J. Ding, Y. Zhao, J. Duan, B. He, Q. Tang, Alloy-Controlled Work Function for Enhanced Charge Extraction in All-Inorganic CsPbBr3 Perovskite Solar Cells. ChemSusChem 11(9), 1432–1437 (2018)

    Article  CAS  Google Scholar 

  31. J. Liang, C. Wang, P. Zhao, Z. Lu, Y. Ma, Z. Xu, Y. Wang, H. Zhu, Y. Hu, G. Zhu, L. Ma, T. Chen, Z. Tie, J. Liu, Z. Jin, Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale 9, 11841–11845 (2017)

    Article  CAS  Google Scholar 

  32. S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, H. Chen, Synergistic Effect of Non-stoichiometry and Sb-doping on Air-stable α-CsPbI3 for Efficient Carbon-based Perovskite Solar Cells. Nanoscale 10, 9996–10004 (2018)

    Article  CAS  Google Scholar 

  33. J. Liang, X. Han, J. Yang, B. Zhang, Q. Fang, J. Zhang, Q. Ai, M. Ogle, T. Terlier, A. Martí, J. Lou, Defect Engineering Enabled High-Efficiency All-Inorganic Perovskite Solar Cells. Adv. Mater. 31(51), 1903448 (2019)

    Article  CAS  Google Scholar 

  34. C. Dong, X. Han, Y. Zhao, J. Li, L. Chang, W. Zhao, A Green Anti-Solvent Process for High Performance Carbon-Based CsPbI2Br All-Inorganic Perovskite Solar Cell. Solar RRL 2(9), 1800139 (2018)

    Article  Google Scholar 

  35. Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, Efficient and Hole-Transporting-Layer-Free CsPbI2Br Planar Heterojunction Perovskite Solar Cells through Rubidium Passivation. ChemSusChem 12(5), 983–989 (2019)

    Article  CAS  Google Scholar 

  36. J. Duan, Y. Zhao, B. He, Q. Tang, High-Purity Inorganic Perovskite Films for Solar Cells with 9.72% Efficiency. Angew. Chem. 130(14), 3787–3791 (2018)

    Article  Google Scholar 

  37. G. Liao, Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Enhanced Charge Extraction with All-Carbon Electrodes for Inorganic CsPbBr3 Perovskite Solar Cells. Dalton T. 47, 15283–15287 (2018)

    Article  CAS  Google Scholar 

  38. X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, Carbon-Based CsPbBr3 Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability. ACS Appl. Mater. Inter. 8(49), 33649–33655 (2016)

    Article  CAS  Google Scholar 

  39. P. Teng, X. Han, J. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, T. Yu, An Elegant Face-down Liquid-space-restricted Deposition of CsPbBr3 Films for Efficient Carbon-based All-Inorganic Planar Perovskite Solar Cells. ACS Appl. Mater. Inter. 10(11), 9541–9546 (2018)

    Article  CAS  Google Scholar 

  40. Y. Zhao, J. Duan, Y. Wang, X. Yang, Q. Tang, Precise Stress Control of Inorganic Perovskite Films for Carbon-Based Solar Cells with an Ultrahigh Voltage of 1.622V. Nano Energy 67, 104286 (2020)

    Article  CAS  Google Scholar 

  41. X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y.-B. Cheng, A. Hagfeldt, L. Sun, Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. J. Energy Chem. 46, 8–15 (2020)

    Article  Google Scholar 

  42. J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. J. Am. Chem. Soc. 139(40), 14009–14012 (2017)

    Article  CAS  Google Scholar 

  43. W. Zhu, Q. Zhang. D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells to Over 9%. Adv. Energy Mater. 8(30), 1802080 (2018)

    Article  Google Scholar 

  44. W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, Band Alignment Engineering Towards High Efficiency Carbon-Based Inorganic Planar CsPbIBr2 Perovskite Solar Cells. ChemSusChem 12(10), 2318–2325 (2019)

    Article  CAS  Google Scholar 

  45. X. Wu, F. Qi, F. Li, X. Deng, Z. Li, S. Wu, T. Liu, Y. Liu, J. Zhang, Z. Zhu, Low-Temperature Processed Carbon Electrode Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability. Energ. Environ. Mater. 4(1), 95–102 (2021)

    Article  CAS  Google Scholar 

  46. W. Zhu, Z. Zhang, W. Chai, D. Chen, H. Xi, J. Chang, J. Zhang, C. Zhang, Y. Hao, Benign Pinholes in CsPbIBr2 Absorber Film Enable Efficient Carbon-Based, All-Inorganic Perovskite Solar Cells. ACS Appl. Energy Mater. 2(7), 5254–5262 (2019)

    Article  CAS  Google Scholar 

  47. W.D. Zhu, W.M. Cai, D.D. Chen, J.X. Ma, D.Z. Chen, H. Xi, J.C. Zhang, C.F. Zhang, Y. Hao, High-Efficiency (>14%) and Air-Stable Carbon-Based, All-Inorganic CsPbI2Br Perovskite Solar Cells through a Top-Seeded Growth Strategy. ACS Energy Lett 6(4), 1500–1510 (2021)

    Article  CAS  Google Scholar 

  48. H.L. Wang, H.C. Liu, Z.J. Dong, W.P. Li, L.Q. Zhu, H.N. Chen, Composition manipulation boosts the efficiency of carbon-based CsPbI3 perovskite solar cells to beyond 14%. Nano Energy 84, 105881 (2021)

    Article  CAS  Google Scholar 

  49. Q.W. Zhou, J.L. Duan, Y.D. Wang, X.Y. Yang, Q.W. Tang, Tri-functionalized TiOxCl4–2x accessory layer to boost efficiency of hole-free, all-inorganic perovskite solar cells. J ENERGY CHEM 50, 1–8 (2020)

    Article  Google Scholar 

  50. X. Wu, F. Qi, F.Z. Li, X. Deng, Z. Li, S.F. Wu, T.T. Liu, Y.Z. Liu, J. Zhang, Z.L. Zhu, Low-Temperature Processed Carbon Electrode-Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability. Energy Environ. Mater. 4(1), 95–102 (2021)

    Article  CAS  Google Scholar 

  51. J. Wang, Y. Wu, Y. Cao, G. Li, Y. Liao, Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym. Sci. 298, 1107–1112 (2020)

    Article  CAS  Google Scholar 

  52. L. Gong, Y.Z. Liu, F.Y. Liu, L.X. Jiang, Room-temperature deposition of flexible transparent conductive Ga-doped ZnO thin films by magnetron sputtering on polymer substrates. J. Mater. Sci. 28, 6093–6098 (2017)

    CAS  Google Scholar 

  53. X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan, J. Zhu, D. Zhou, Y. Wu, C. Chen, H. Song, Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled High-Performance Perovskite Solar Cells. Adv. Funct. Mater. 30(30), 2003295 (2020)

    Article  CAS  Google Scholar 

  54. L. Yang, C.X. Dall’Agnese, Y.H. Dall’Agnese, G. Chen, Y. Gao, Y. Sanehira, A.K. Jena, X.F. Wang, Y. Gogotsi, T. S. Miyasaka, Surface-Modified Metallic Ti3C2Tx MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 29(46), 1905694 (2019)

    Article  CAS  Google Scholar 

  55. Y. Zhao, X. Zhang, X.F. Han, C.Y. Hou, H.Z. Wang, J.B. Qi, Y.G. Li, Q.H. Zhang, Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 Solar Cells. Chem. Eng. J. 417(1), 127912 (2021)

    Article  CAS  Google Scholar 

  56. W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J.P.C. Baena, A. Hagfeldt, M. Graetzela, Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018)

    Article  CAS  Google Scholar 

  57. T. Non, T. Supasai, Y.Y. Li, I.M. Tang, N. Rujisamphan, Insights into Recombination Processes from Light Intensity–Dependent Open-Circuit Voltages and Ideality Factors in Planar Perovskite Solar Cells. Energy Technol-Ger 8(5), 1901196 (2020)

    Article  Google Scholar 

  58. C.Y. Wang, Y.J. Long, X.H. Liu, S.Q. Fu, J.H. Wang, J. Zhang, Z.Y. Hua, Y.J. Zhu, A dual promotion strategy of interface modification and ion doping for efficient and stable carbon-based planar CsPbBr3 perovskite solar cells. J. Mater. Chem. C. 8, 17211–17221 (2020)

    Article  CAS  Google Scholar 

  59. H. Bi, B.B. Liu, D.M. He, L. Bai, W.Q. Wang, Z.G. Zang, J.Z. Chen, Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem. Eng. J. 418(15), 129375 (2021)

    Article  CAS  Google Scholar 

  60. H. Xu, Z. Hu, Y. Wang, C. Yang, C. Gao, H. Zhang, J. Zhang, Y. Zhu, Aged sol-gel solution-processed texture tin oxide for high-efficient perovskite solar cells. Nano Technol. 31, 315205 (2020)

    CAS  Google Scholar 

  61. B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr<background-color:#CCCCFF;usub>2</background-color:#CCCCFF;usub>. perovskite solar cells via low-temperature processed In<background-color:#CCCCFF;usub>2</background-color:#CCCCFF;usub>S<background-color:#CCCCFF;usub>3</background-color:#CCCCFF;usub> as electron-transport-layer. Nano Energy 57, 718–727 (2019)

    Article  CAS  Google Scholar 

  62. X. Meng, K. Chi, Q. Li, Y. Cao, G. Song, B. Liu, H. Yang, W. Fu, Interfacial Modification of Mesoporous TiO<background-color:#CCCCFF;usub>2</background-color:#CCCCFF;usub>. Films with PbI<background-color:#CCCCFF;usub>2</background-color:#CCCCFF;usub>-Ethanolamine-Dimethyl Sulfoxide Solution for CsPbIBr<background-color:#CCCCFF;usub>2</background-color:#CCCCFF;usub> Perovskite Solar Cells. Nanomaterials-Basel 10(5), 962–972 (2020)

    Article  CAS  Google Scholar 

  63. X. Jia, L. Liu, Z. Fang, TBAB additive for inorganic CsPbI2.4Br0.6 perovskite solar cells with efficiency beyond 15%. J. Mater. Chem. C. 7, 7207–7211 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Fund of Hunan Provincial Education Department (Contract No. 20B030), Foundation of Hunan Educational Committee (Grant No. 18A149).

Author information

Authors and Affiliations

Authors

Contributions

HF: designing experimental scheme, doing experiments, and writing—original draft. JZ: XRD and SEM measurements, and writing—review and editing. YL: doing experiments. LG: advisor, funding acquisition, resources, and writing—review and editing. HH: PL and TRPL measurements. ZF: PL and TRPL measurements. CZ: TPC and TPV measurements. JC: JV curve measurements. JF: EIS measurements.

Corresponding author

Correspondence to Li Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zhang, J., Li, Y. et al. A facile interface engineering method to improve the performance of FTO/ZnO/CsPbI3−xBrx (x < 1)/C solar cells. J Mater Sci: Mater Electron 33, 3711–3725 (2022). https://doi.org/10.1007/s10854-021-07563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07563-1

Navigation