Skip to main content

Advertisement

Log in

A succulent-like structure of MoS2-coated S-doped ZIF-67@NF as the supercapacitor electrode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MoS2-coated zeolitic imidazoline framework-derived transition metal sulfides (MoS2-coated S-doped ZIF-67@NF) are synthesized by hydrothermal method on nickel foam (NF). ZIF-derived transition metal sulfide and MoS2 as inner core and outer shell, respectively. Overall structure like a succulent plant, maintaining the unique skeleton structure of ZIF as an inner core, ZIF-derived transition metal sulfides enhances the charge transfer efficiency. The well-covered MoS2 protects the inner core and acts as a channel for electrolyte ion diffusion to the interior. At 1 mA cm−2, the MoS2 coated S-doped ZIF-67@NF (MSZ@NF) electrode provides a specific capacity of 4840 mF cm−2 and good cycling stability (81.3% at 30 mA cm−2 after 5000 cycles). The the asymmetric MoS2 coated S-doped ZIF@NF//RGO device achieved high energy density of 93.49 μWh cm−2 at 0.8 mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018)

    Article  CAS  Google Scholar 

  2. Z. Ma, Z. Sun, H. Jiang, F. Li, Q. Wang, F. Qu, Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors. Appl. Surf. Sci. 533, 50 (2020)

    Article  Google Scholar 

  3. T. Bi, J. Jiang, Y. Lei, X. Zheng, Z. Jia, Z. Wei, H. Yang, Improving supercapacitive performance of CNTs/NiCo2S4 composites by interface regulation. Appl. Surf. Sci. 530, 60 (2020)

    Article  Google Scholar 

  4. G. Liu, B. Wang, T. Liu, L. Wang, H. Luo, T. Gao, F. Wang, A. Liu, D. Wang, 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J. Mater. Chem. A 6(4), 1822–1831 (2018)

    Article  CAS  Google Scholar 

  5. X. Zhang, C. Si, X. Guo, R. Kong, F. Qu, A MnCo2S4nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. J. Mater. Chem. A 5(33), 17211–17215 (2017)

    Article  CAS  Google Scholar 

  6. M.Z. Iqbal, S. Zakar, S.S. Haider, A.M. Afzal, M.J. Iqbal, M.A. Kamran, A. Numan, Electrodeposited CuMnS and CoMnS electrodes for high-performance asymmetric supercapacitor devices. Ceram. Int. 46(13), 21343–21350 (2020)

    Article  CAS  Google Scholar 

  7. C. Deng, L. Yang, C. Yang, P. Shen, L. Zhao, Z. Wang, C. Wang, J. Li, D. Qian, Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors. Appl. Surf. Sci. 428, 148–153 (2018)

    Article  CAS  Google Scholar 

  8. Y. Zhang, D. Wang, S. Lü, Y. Chen, H. Fan, M. Wei, L. Yang, W.W. Yu, X. Meng, CoO@CoS/Ni3S2 hierarchical nanostructure arrays for high performance asymmetric supercapacitor. Appl. Surf. Sci. 532, 25 (2020)

    Article  Google Scholar 

  9. Y. Zhao, Q. Pang, Y. Meng, Y. Gao, C. Wang, B. Liu, Y. Wei, F. Du, G. Chen, Self-assembled CoS nanoflowers wrapped in reduced graphene oxides as the high-performance anode materials for sodium-ion batteries. Chemistry 23(53), 13150–13157 (2017)

    Article  CAS  Google Scholar 

  10. Y. Miao, X. Zhang, J. Zhan, Y. Sui, J. Qi, F. Wei, Q. Meng, Y. He, Y. Ren, Z. Zhan, Z. Sun, Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. Adv. Mater. Interfaces 7(3), 1901718 (2019)

    Google Scholar 

  11. Y. Wu, M. Yan, L. Sun, W. Shi, Flexible yolk-shelled NiCo2S4 hollow spheres/RGO film electrodes for efficient supercapacitive energy storage. New J. Chem. 42(19), 16174–16182 (2018)

    Article  CAS  Google Scholar 

  12. X. Huang, Z. Zhang, H. Li, Y. Zhao, H. Wang, T. Ma, Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode. J. Alloys Compd. 722, 662–668 (2017)

    Article  CAS  Google Scholar 

  13. A.M. Kale, R. Manikandan, C.J. Raj, R. Velayutham, W.-J. Cho, B.C. Kim, Post synthetic annealing of zeolitic imidazolate framework-67 for high-performance hybrid supercapacitors. Appl. Surf. Sci. 542, 148716 (2021)

    Article  CAS  Google Scholar 

  14. B. Chameh, M. Moradi, S. Kaveian, Synthesis of hybrid ZIF-derived binary ZnS/CoS composite as high areal-capacitance supercapacitor. Synth. Met. 260, 116262 (2020)

    Article  CAS  Google Scholar 

  15. S. Saha, P. Samanta, N.C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage. 17, 181–202 (2018)

    Article  Google Scholar 

  16. D. Ge, L. Yang, Z. Tong, Y. Ding, W. Xin, J. Zhao, Y. Li, Ion diffusion and optical switching performance of 3D ordered nanostructured polyaniline films for advanced electrochemical/electrochromic devices. Electrochim. Acta 104, 191–197 (2013)

    Article  CAS  Google Scholar 

  17. P. Cai, T. Liu, L. Zhang, B. Cheng, J. Yu, ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors. Appl. Surf. Sci. 504, 144501 (2020)

    Article  CAS  Google Scholar 

  18. S. Yang, L. Peng, D.T. Sun, E. Oveisi, S. Bulut, W.L. Queen, Metal-organic-framework-derived Co3S4 hollow nanoboxes for the selective reduction of nitroarenes. Chemsuschem 11(18), 3131–3138 (2018)

    Article  CAS  Google Scholar 

  19. Y. Xu, X.-J. Lv, Y. Chen, W.-F. Fu, Highly selective reduction of nitroarenes to anilines catalyzed using MOF-derived hollow Co3S4 in water under ambient conditions. Catal. Commun. 101, 31–35 (2017)

    Article  CAS  Google Scholar 

  20. T. Shu, H. Gao, Q. Li, F.X. Wei, Y.J. Ren, Z. Sun, J.Q. Qi, Y.W. Sui, One-step phosphating synthesis of CoP nanosheet arrays combined with Ni2P as a high-performance electrode for supercapacitors. Nanoscale 12(40), 20710–20718 (2020)

    Article  CAS  Google Scholar 

  21. H. Rong, T. Chen, R. Shi, Y. Zhang, Z. Wang, Hierarchical NiCo2O4@NiCo2S4 nanocomposite on Ni foam as an electrode for hybrid supercapacitors. ACS Omega 3(5), 5634–5642 (2018)

    Article  CAS  Google Scholar 

  22. S.K. Meher, G.R. Rao, Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. J. Power Sources 215, 317–328 (2012)

    Article  CAS  Google Scholar 

  23. H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, Y. Ruan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15(38), 7649–7651 (2013)

    Article  CAS  Google Scholar 

  24. J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z. Wang, Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain. Chem. Eng. 2(4), 809–815 (2013)

    Article  Google Scholar 

  25. J. Zhao, L. Gao, Z. Wang, S. Wang, R. Xu, Boosting the performance of flexible in-plane micro-supercapacitors by engineering MoS2 nanoparticles embedded in laser-induced graphene. J. Alloys Compd. 887161514, (2021)

    Article  CAS  Google Scholar 

  26. N. Padmanathan, H. Shao, D. McNulty, C. O’Dwyer, K.M. Razeeb, Hierarchical NiO-In2O3 microflower (3D)/ nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J. Mater. Chem. A 4(13), 4820–4830 (2016)

    Article  CAS  Google Scholar 

  27. L. Arun, C. Karthikeyan, D. Philip, M. Sasikumar, E. Elanthamilan, J.P. Merlin, C. Unni, Effect of Ni2+ doping on chemocatalytic and supercapacitor performance of biosynthesized nanostructured CuO. J. Mater. Sci. Mater. Electron. 29(24), 21180–21193 (2018)

    Article  CAS  Google Scholar 

  28. F. Lu, M. Zhou, W. Li, Q. Weng, C. Li, Y. Xue, X. Jiang, X. Zeng, Y. Bando, D. Golberg, Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26, 313–323 (2016)

    Article  CAS  Google Scholar 

  29. R. Jiang, B. Li, C. Fang, J. Wang, Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26(31), 5274–5309 (2014)

    Article  CAS  Google Scholar 

  30. H. Tian, K.X. Zhu, Y. Jiang, L. Wang, W. Li, Z.F. Yu, C.Q. Wu, Heterogeneous assembly of Ni-Co layered double hydroxide/sulfonated graphene nanosheet composites as battery-type materials for hybrid supercapacitors. Nanoscale Adv. 3(10), 2924–2933 (2021)

    Article  CAS  Google Scholar 

  31. M. Jana, S. Saha, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 3(14), 7323–7331 (2015)

    Article  CAS  Google Scholar 

  32. M. Zhong, Y. Song, Y. Li, C. Ma, X. Zhai, J. Shi, Q. Guo, L. Liu, Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. J. Power Sources 217, 6–12 (2012)

    Article  CAS  Google Scholar 

  33. A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6(7), 2866–2876 (2018)

    Article  CAS  Google Scholar 

  34. F.-K. Hsu, M.-S. Lee, C.-C. Lin, Y.-K. Lin, W.-T. Hsu, A flexible portable proton exchange membrane fuel cell. J. Power Sources 219, 180–187 (2012)

    Article  CAS  Google Scholar 

  35. F. Zhu, M. Yan, Y. Liu, H. Shen, Y. Lei, W. Shi, Hexagonal prism-like hierarchical Co9S8@Ni(OH)2core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5(43), 22782–22789 (2017)

    Article  CAS  Google Scholar 

  36. E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5(5), 1098–1115 (2013)

    Article  CAS  Google Scholar 

  37. X. Liu, W. Li, X. Zhao, Y. Liu, C.-W. Nan, L.-Z. Fan, Two birds with one stone: metal-organic framework derived micro-/nanostructured Ni2P/Ni Hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater. 29(35), 1901510 (2019)

    Article  Google Scholar 

  38. F. Zhang, J. Ma, H. Yao, Ultrathin Ni-MOF nanosheet coated NiCo2O4 nanowire arrays as a high-performance binder-free electrode for flexible hybrid supercapacitors. Ceram. Int. 45(18), 24279–24287 (2019)

    Article  CAS  Google Scholar 

  39. L. Cheng, Q. Zhang, M. Xu, Q. Zhai, C. Zhang, Two-for-one strategy: three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor. J. Colloid Interface Sci. 583, 299–309 (2021)

    Article  CAS  Google Scholar 

  40. J. Dong, S. Li, Y. Ding, Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors. J. Alloys Compd. 845, 155701 (2020)

    Article  CAS  Google Scholar 

  41. B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2 S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29(6), 1605051 (2017)

    Article  Google Scholar 

  42. V. Davydov, A. Rakhmanina, I. Kireev, I. Alieva, O. Zhironkina, O. Strelkova, V. Dianova, T.D. Samani, K. Mireles, L. Yahia, R. Uzbekov, V. Agafonov, V. Khabashesku, Solid state synthesis of carbon-encapsulated iron carbide nanoparticles and their interaction with living cells. J. Mater. Chem. B 2(27), 4250–4261 (2014)

    Article  CAS  Google Scholar 

  43. V.K.A. Muniraj, P.K. Dwivedi, P.S. Tamhane, S. Szunerits, R. Boukherroub, M.V. Shelke, High-energy flexible supercapacitor-synergistic effects of polyhydroquinone and RuO2: xH2O with microsized, few-layered, self-supportive exfoliated-graphite sheets,. ACS Appl. Mater. Interfaces 11(20), 18349–18360 (2019)

    Article  CAS  Google Scholar 

  44. G. Nie, X. Zhao, J. Jiang, Y. Luan, J. Shi, J. Liu, Z. Kou, J. Wang, Y.-Z. Long, Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chem. Eng. J. 402, 126294 (2020)

    Article  CAS  Google Scholar 

  45. W. Zhao, J. Peng, W. Wang, B. Jin, T. Chen, S. Liu, Q. Zhao, W. Huang, Interlayer Hydrogen-bonded metal porphyrin frameworks/MXene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small 15(18), e1901351 (2019)

    Article  Google Scholar 

  46. X. Liu, J. Wang, G. Yang, In Situ growth of the Ni3V2O8@PANI composite electrode for flexible and transparent symmetric supercapacitors. ACS Appl Mater. Interfaces. 10(24), 20688–20695 (2018)

    Article  CAS  Google Scholar 

  47. J. He, D. Yang, H. Li, X. Cao, L. Kang, X. He, R. Jiang, J. Sun, Z. Lei, Z.-H. Liu, Mn3O4/RGO/SWCNT hybrid film for all-solid-state flexible supercapacitor with high energy density. Electrochim. Acta 283, 174–182 (2018)

    Article  CAS  Google Scholar 

  48. J. Lu, H. Ran, J. Li, J. Wan, C. Wang, P. Ji, X. Wang, G. Liu, C. Hu, A fast composite-hydroxide-mediated approach for synthesis of 2D-LiCoO2 for high performance asymmetric supercapacitor. Electrochim. Acta 331, 335426 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos: 51871238 and 52171227), the Xuzhou Science and Technology Achievement Transformation Project of China (Grant No: KC19235), the Ningbo natural fund project (Grant No: 2018A6100063). the application basic project of Sichuan Provincial Department of Science and Technology (Grant No: 2019YJ0688) and the Natural Science Foundation of Jiangsu Province (Grant No: BE2021633).

Author information

Authors and Affiliations

Authors

Contributions

LM: Conceptualization, Validation, Formal analysis, Investigation, Data curation, Writing—original draft, Visualization. YM: Investigation, Data curation, Visualization. MZ: Investigation, Data curation, Writing—review & editing. YS*: Writing—review & editing, Resources, Project administration, Visualization, Supervision, Funding acquisition. JQ: Software, Investigation. Methodology. Data Curation. FW: Writing—review & editing, Resources. QM: Supervision, Data Curation, Supervision. LP: Data Curation, Resources. YR: Data Curation, Resources. BX: Data Curation, Resources. XX*: Writing—review & editing, Data Curation, Supervision. ZS: Writing—review & editing, Visualization, Supervision.

Corresponding authors

Correspondence to Yanwei Sui or Xiaolan Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Miao, Y., Zhang, M. et al. A succulent-like structure of MoS2-coated S-doped ZIF-67@NF as the supercapacitor electrode material. J Mater Sci: Mater Electron 33, 1930–1941 (2022). https://doi.org/10.1007/s10854-021-07394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07394-0

Navigation