Skip to main content
Log in

Investigations on BaMnxTi1-xO3 ferroelectric film based MFS structure for non-volatile memory application

  • Original Paper
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaMnxTi1-xO3 thin film on a silicon substrate has been prepared through the sol–gel spin coating process. The ferroelectric BaMnxTi1-xO3 film shows the predominant perovskite ABO3 structure for x = 0.2 and 0.3 for the annealing temperature of 650 °C under nitrogen ambient. The metal contact on top and silicon substrate at the bottom of the film forms a Metal-Ferroelectric-Semiconductor capacitor structure. In BaMnxTi1-xO3, the deposited film changes its structural and electrical properties as the concentration value of ‘x’ is changed. The crystal structure of the deposited film has been analysed by XRD. FESEM, EDS and XPS characterization of the film were carried out to discuss the change in the film structure with the change in the value of ‘x’. The Capacitor vs. Voltage (C–V), Current vs. Voltage (I–V), Charge vs. Voltage (Q–V), Endurance, PUND (Positive Up Negative Down) and dielectric study of the films are discussed. Memory window of 8.6 V and leakage current of few nA are obtained. The deposited ferroelectric film shows an endurance of ~ 1011 iteration cycle for the PUND pulse. The optimized doping molar concentration ‘x’ in BaMnxTi1-xO3 shows favourable results for ferroelectric non-volatile memory application with a low cost fabrication method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Nuraje, K. Su, Perovskite ferroelectric nanomaterials. Nanoscale 5(19), 8752–8780 (2013). https://doi.org/10.1039/c3nr02543h

    Article  CAS  Google Scholar 

  2. H. Zhang, N. Li, K. Li, D. Xue, Structural stability and formability of ABO3-type perovskite compounds. Acta Crystallogr. Sect. B Struct. Sci. 63(6), 812–818 (2007). https://doi.org/10.1107/S0108768107046174

    Article  CAS  Google Scholar 

  3. N. Setter et al., Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2336999

    Article  Google Scholar 

  4. H. Takasu, Ferroelectric memories and their applications. Microelectron. Eng. 59(1–4), 237–246 (2001). https://doi.org/10.1016/S0167-9317(01)00630-X

    Article  CAS  Google Scholar 

  5. H. Ishiwara, Ferroelectric random access memories. J. Nanosci. Nanotechnol. 12(10), 7619–7627 (2012). https://doi.org/10.1166/jnn.2012.6651

    Article  CAS  Google Scholar 

  6. A. C. Cell, S. Okhonin, M. Nagoga, J. M. Sallese, P. Fazan, A capacitor-less 1T-DRAM cell. 23(2), 85–87 (2002). https://doi.org/10.1109/55.981314

  7. B.H. Lee, J. Oh, H.H. Tseng, R. Jammy, H. Huff, Gate stack technology for nanoscale devices. Mater. Today 9(6), 32–40 (2006). https://doi.org/10.1016/S1369-7021(06)71541-3

    Article  CAS  Google Scholar 

  8. Z. Wen, C. Li, D. Wu, A. Li, N. Ming, Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12(7), 617–621 (2013). https://doi.org/10.1038/nmat3649

    Article  CAS  Google Scholar 

  9. X. Yin, S. Member, X. Chen, M. Niemier, S. Member, X. S. Hu, Ferroelectric FETs-based nonvolatile logic-in-memory circuits. 27(1), 159–172 (2019)

  10. H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Curr. Appl. Phys. 9(1 SUPPL.), S2–S6 (2009). https://doi.org/10.1016/j.cap.2008.02.013

    Article  Google Scholar 

  11. Y. Arimoto, H. Ishiwara, Current status of ferroelectric random-access memory. MRS Bull. 29(11), 823–828 (2004). https://doi.org/10.1557/mrs2004.235

    Article  CAS  Google Scholar 

  12. G. Panomsuwan, O. Takai, N. Saito, Enhanced memory window of Au/BaTiO 3/SrTiO 3/Si(001) MFIS structure with high c-axis orientation for non-volatile memory applications. Appl. Phys. A Mater. Sci. Process. 108(2), 337–342 (2012). https://doi.org/10.1007/s00339-012-7011-6

    Article  CAS  Google Scholar 

  13. A. Gruverman, O. Kolosov, J. Hatano, K. Takahashi, H. Tokumoto, Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy. J. Vac. Sci. Technol. Microelectron. Nanom. Struct. 13(3), 1095–1099 (1995). https://doi.org/10.1116/1.587909

    Article  CAS  Google Scholar 

  14. Y. Liu et al., Enhancing oxygen reduction reaction activity of perovskite oxides cathode for solid oxide fuel cells using a novel anion doping strategy. Int. J. Hydrogen Energy 43(27), 12328–12336 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.167

    Article  CAS  Google Scholar 

  15. M.T. Ghoneim et al., Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications. Adv. Electron. Mater. 1(6), 1–10 (2015). https://doi.org/10.1002/aelm.201500045

    Article  CAS  Google Scholar 

  16. W.H. Shepherd, Electrical Characteristics of Ferroelectric PZT Thin Films for DRAM Applications. IEEE Trans. Electron Devices 39(9), 2044–2049 (1992). https://doi.org/10.1109/16.155876

    Article  Google Scholar 

  17. A. Debnath, V. Srivastava, S. Singh, Sunny, Sol–gel derived BST (BaxSr1−xTiO3) thin film ferroelectrics for non-volatile memory application with metal–ferroelectric–semiconductor (MFS) structure. Appl. Nanosci. 10(12), 5511–5521 (2020). https://doi.org/10.1007/s13204-020-01481-0

    Article  CAS  Google Scholar 

  18. Q. Wang, Z.P. Cao, C.M. Wang, Q.W. Fu, D.F. Yin, H.H. Tian, Thermal stabilities of electromechanical properties in cobalt-modified strontium bismuth titanate (SrBi4Ti4O15). J. Alloys Compd. 674, 37–43 (2016). https://doi.org/10.1016/j.jallcom.2016.03.022

    Article  CAS  Google Scholar 

  19. D.A. Golosov, S.M. Zavadski, V.V. Kolos, A.S. Turtsevich, D.E. Okodzhi, Influence of the annealing temperature on the ferroelectric properties of niobium-doped strontium–bismuth tantalate. Russ. Microelectron. 45(1), 11–17 (2016). https://doi.org/10.1134/S1063739715060037

    Article  CAS  Google Scholar 

  20. A. Debnath, V. Srivastava, Sunny, S. Singh, Fabrication and characterization of metal-ferroelectric-semiconductor non-volatile memory using BaTiO3 film prepared through sol–gel process. Appl. Phys. AMater. Sci. Process (2020). https://doi.org/10.1007/s00339-019-3192-6

    Article  Google Scholar 

  21. H.D. Chen, K.R. Udayakumar, L.E. Cross, J.J. Bernstein, L.C. Niles, Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates. J. Appl. Phys. 77(7), 3349–3353 (1995). https://doi.org/10.1063/1.358621

    Article  CAS  Google Scholar 

  22. E.S. Thiele, D. Damjanovic, N. Setter, Processing and properties of screen-printed lead zirconate titanate piezoelectric thick films on electroded silicon. J. Am. Ceram. Soc. 84(12), 2863–2868 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01106.x

    Article  CAS  Google Scholar 

  23. Z. Liu, A.R. Paterson, H. Wu, P. Gao, W. Ren, Z.G. Ye, Synthesis, structure and piezo-/ferroelectric properties of a novel bismuth-containing ternary complex perovskite solid solution. J. Mater. Chem. C 5(16), 3916–3923 (2017). https://doi.org/10.1039/c7tc00571g

    Article  CAS  Google Scholar 

  24. M.M.V. Petrovic, J.D. Bobic, R. Grigalaitis, B.D. Stojanovic, J. Banys, La-doped and la/mn-co-doped barium titanate ceramics. Acta Phys. Pol. A 124(1), 155–160 (2013). https://doi.org/10.12693/APhysPolA.124.155

    Article  CAS  Google Scholar 

  25. L.M. Arunachalam, D. Chakravorty, E.C. Subbarao, Synthesis and properties of manganese-doped barium titanate. Bull. Mater. Sci. 9(3), 159–168 (1987). https://doi.org/10.1007/BF02744264

    Article  CAS  Google Scholar 

  26. M. Jain, S.B. Majumder, R.S. Katiyar, F.A. Miranda, F.W. Van Keuls, Improvement in electrical characteristics of graded manganese doped barium strontium titanate thin films. Appl. Phys. Lett. 82(12), 1911–1913 (2003). https://doi.org/10.1063/1.1560861

    Article  CAS  Google Scholar 

  27. A. Kumari, B. Dasgupta Ghosh, A study of dielectric behavior of manganese doped barium titanate–polyimide composites. Adv. Polym. Technol. 37(6), 2270–2280 (2018). https://doi.org/10.1002/adv.21886

    Article  CAS  Google Scholar 

  28. J.P. Attfield, Structure-property relations in doped perovskite oxides. Int. J. Inorg. Mater. 3(8), 1147–1152 (2001). https://doi.org/10.1016/S1466-6049(01)00110-6

    Article  CAS  Google Scholar 

  29. H.T. Langhammer, T. Müller, R. Böttcher, H.P. Abicht, Crystal structure and related properties of copper-doped barium titanate ceramics. Solid State Sci. 5(7), 965–971 (2003). https://doi.org/10.1016/S1293-2558(03)00087-6

    Article  CAS  Google Scholar 

  30. X.H. Liu, Z. Xu, S.B. Qu, X.Y. Wei, J.L. Chen, Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3-0.3BaTiO3 solid solution. Ceram. Int. 34(4), 797–801 (2008). https://doi.org/10.1016/j.ceramint.2007.09.029

    Article  CAS  Google Scholar 

  31. J.R. Sambrano et al., Theoretical analysis of the structural deformation in Mn-doped BaTiO3. Chem. Phys. Lett. 402(4–6), 491–496 (2005). https://doi.org/10.1016/j.cplett.2004.12.084

    Article  CAS  Google Scholar 

  32. S.K. Das, P.P. Rout, S.K. Pradhan, B.K. Roul, Effect of equiproprotional substitution of Zn and Mn in BaTiO3 ceramic—An index to multiferroic applications. J. Adv. Ceram. 1(3), 241–248 (2012). https://doi.org/10.1007/s40145-012-0023-z

    Article  CAS  Google Scholar 

  33. T.L. Phan et al., Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO 3 ceramics. J. Appl. Phys. doi 10(1063/1), 4733691 (2012)

    Google Scholar 

  34. N.V. Dang, N.T. Dang, T.A. Ho, N. Tran, T.L. Phan, Electronic structure and magnetic properties of BaTi1-xMnxO3. Curr. Appl. Phys. 18(2), 150–154 (2018). https://doi.org/10.1016/j.cap.2017.11.020

    Article  Google Scholar 

  35. D.H. Minh, N.V. Loi, N.H. Duc, B.N.Q. Trinh, Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J. Sci.: Adv. Mater. Devices 1, 75–79 (2016). https://doi.org/10.1016/j.jsamd.2016.03.004

    Article  Google Scholar 

  36. M.S. Bozgeyik, J.S. Cross, H. Ishiwara et al., Electrical and memory window properties of Sr0.8-xBaxBi2.2Ta2-yZryO9 ferroelectric gate in metal-ferroelectric-insulator-semiconductor structure. J. Electroceram. 28, 158–164 (2012). https://doi.org/10.1007/s10832-012-9698-3

    Article  CAS  Google Scholar 

  37. B. Jiang, Large memory window and good retention characteristics of ferroelectric-gate field-effect transistor with Pt/Bi3.4Ce0.6Ti3O12/CeO2/Si structure. J. Phys. D: Appl. Phys. 45, 025102 (2012). https://doi.org/10.1088/0022-3727/45/2/025102

    Article  CAS  Google Scholar 

  38. W. Xiao, C. Liu, Y. Peng et al., Memory window and endurance improvement of Hf0.5Zr0.5O2-based FeFETs with ZrO2 seed layers characterized by fast voltage pulse measurements. Nanoscale Res. Lett. 14, 254 (2019). https://doi.org/10.1186/s11671-019-3063-2

    Article  CAS  Google Scholar 

  39. S.P. More, M.V. Khedkar, D.D. Andhare, A.V. Humbe, K.M. Jadhav, Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics. J. Mater. Sci. Mater. Electron. 31(22), 19756–19763 (2020). https://doi.org/10.1007/s10854-020-04500-6

    Article  CAS  Google Scholar 

  40. W. Chen, X. Zhao, J. Sun, L. Zhang, L. Zhong, Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloys Compd. 670, 48–54 (2016). https://doi.org/10.1016/j.jallcom.2016.01.187

    Article  CAS  Google Scholar 

  41. X. Wang, M. Gu, B. Yang, S. Zhu, W. Cao, Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron. Eng. 66(1–4), 855–859 (2003). https://doi.org/10.1016/S0167-9317(02)01011-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Design Innovation Center (DIC) SPOKE, IIIT Allahabad, Prayagraj. The XRD results of the films were obtained from Spintronic Lab, Applied Science Department, IIIT Allahabad. The AFM and XPS results of the film were done at Institute Information Centre (IIC) at IIT-Roorkee. The SEM and EDS analysis of the film were analysed at MSE department at IIT-Kanpur.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

AD and S had concived and designed the experiment. The data collection and critical revison was contributed by AD, SL and SS.

Corresponding author

Correspondence to Sunny.

Ethics declarations

Conflict of interest

The Author(s) declare(s) that there is no conflict of interest.

Code availability

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, A., Lalwani, S., Singh, S. et al. Investigations on BaMnxTi1-xO3 ferroelectric film based MFS structure for non-volatile memory application. J Mater Sci: Mater Electron 33, 985–999 (2022). https://doi.org/10.1007/s10854-021-07369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07369-1

Navigation