Skip to main content

Advertisement

Log in

Hydrothermal synthesis of NiO/NiCo2O4 nanomaterials for applications in electrochemical energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is well known that the intelligent hybridization of active materials and the controllable recombination of nanostructures can significantly improve the electrochemical performance of pseudocapacitor electrodes. In this work, a NiO/NiCo2O4 needle/sphere nanostructure was synthesized on the hydrochloric acid-activated Nickel foam by a simple hydrothermal method and measured the performance of it as an electrode material for supercapacitors. Field emission scanning electron microscope, transmission electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the morphology and composition of the samples. The electrodes display a prominent specific capacitance (2447 F/g at the ampere density of 2 A/g) and remarkable cycling stability (85.2% capacity remained after 3000 cycles), owing to the unique needle/sphere composite architecture and the rational combination of active materials. The results demonstrate that the three-dimensional composite structure of NiO/NiCo2O4 nanomaterials provides a large specific surface area for the electrode, which promotes the penetration of electrolyte ions and the transmission of electrons. This novel structured material will be promising in the application of supercapacitor electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Poonam, A. Sharma, S.K. Arora, J. Tripathi, Energy Storage. 21, 801–825 (2019). https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  2. M. Horn, J. MacLeod, M. Liu, J. Webb, N. Motta, Econ. Anal. Policy. 61, 93–103 (2018). https://doi.org/10.1016/j.eap.2018.08.003

    Article  Google Scholar 

  3. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Nanoscale 6, 11988–11994 (2014). https://doi.org/10.1039/c4nr02365j

    Article  CAS  Google Scholar 

  4. A. Mishra, N.P. Shetti, S. Basu, K.R. Reddy, T.M. Aminabhavi, ChemElectroChem 6, 5771 (2019). https://doi.org/10.1002/celc.201901122

    Article  CAS  Google Scholar 

  5. M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Chem. Eng. J. 309, 151–158 (2016). https://doi.org/10.1016/j.cej.2016.10.012

    Article  CAS  Google Scholar 

  6. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/c7cs00205j

    Article  CAS  Google Scholar 

  7. Q. Ke, J. Wang, J. Materiom. 2, 37–54 (2016). https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  8. Sowmya, M. Selvakumar, Int. J. Hydrogen Energy. 43, 4067–4080 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.106

  9. Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  10. W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, J. Alloys Compd. 775, 1324–1356 (2018). https://doi.org/10.1016/j.jallcom.2018.10.102

    Article  CAS  Google Scholar 

  11. X. Guo, K. Yan, F. Fan, Y. Zhang, Y. Duan, J. Liu, Mater. Lett. 240, 62–65 (2018). https://doi.org/10.1016/j.matlet.2018.12.117

    Article  CAS  Google Scholar 

  12. B. Naresh, T.N.V. Krishna, S. Srinivasa Rao, H. Kim, Mater. Lett. 248, 218–221 (2019). https://doi.org/10.1016/j.matlet.2019.04.052

    Article  CAS  Google Scholar 

  13. X. Guo, C. Chen, Y. Zhang, Y. Xu, H. Pang, Energy Storage Mater. 23, 439–465 (2019). https://doi.org/10.1016/j.ensm.2019.04.017

    Article  Google Scholar 

  14. A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, Renew. Sustain. Energy Rev. 101, 123–145 (2018). https://doi.org/10.1016/j.rser.2018.10.026

    Article  CAS  Google Scholar 

  15. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Storage Mater. 16, 545–573 (2018). https://doi.org/10.1016/j.ensm.2018.09.007

    Article  Google Scholar 

  16. Q. Liu, X. Hong, X. Zhang, W. Wang, W. Guo, X. Liu, M. Ye, Chem. Eng. J. 356, 985–993 (2018). https://doi.org/10.1016/j.cej.2018.09.095

    Article  CAS  Google Scholar 

  17. Y. Di, O. Yu, X. Jiao, H. Ye, L. Wu, X. Xia, L. Lei, Q. Hao, Ind. Eng. Chem. Res. 57, 6246–6256 (2018). https://doi.org/10.1021/acs.iecr.8b00467

    Article  CAS  Google Scholar 

  18. X. Feng, Y. Huang, C. Li, X. Chen, S. Zhou, X. Gao, C. Chen, Chem. Eng. J. 368, 51–60 (2019). https://doi.org/10.1016/j.cej.2019.02.191

    Article  CAS  Google Scholar 

  19. X. Feng, Y. Huang, C. Li, Y. Xiao, X. Chen, X. Gao, C. Chen, Electrochim. Acta 308, 142–149 (2019). https://doi.org/10.1016/j.electacta.2019.04.048

    Article  CAS  Google Scholar 

  20. J. Wang, Q. Zhong, Y. Xiong, D. Cheng, Y. Zeng, Y. Bu, Appl. Surf. Sci. 483, 1158–1165 (2019). https://doi.org/10.1016/j.apsusc.2019.03.340

    Article  CAS  Google Scholar 

  21. Y. Meng, P. Sun, W. He, B. Teng, X. Xu, Appl. Surf. Sci. 470, 792–799 (2018). https://doi.org/10.1016/j.apsusc.2018.11.191

    Article  CAS  Google Scholar 

  22. T. Dang, L. Wang, D. Wei, G. Zhang, Q. Li, X. Zhang, Z. Cao, G. Zhang, H. Duan, Electrochim. Acta. 299, 346–356 (2018). https://doi.org/10.1016/j.electacta.2018.12.176

    Article  CAS  Google Scholar 

  23. Y. Liu, Q. Lu, Z. Huang, S. Sun, B. Yu, U. Evariste, G. Jiang, J. Yao, J. Alloys Compd. 762, 301–311 (2018). https://doi.org/10.1016/j.jallcom.2018.05.239

    Article  CAS  Google Scholar 

  24. L. Chang, C. Li, H. Ouyang, J. Huang, Q. Huang, Z. Xu, Mater. Lett. 240, 21–24 (2018). https://doi.org/10.1016/j.matlet.2018.12.062

    Article  CAS  Google Scholar 

  25. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Electrochim. Acta. 317, 416–426 (2019). https://doi.org/10.1016/j.electacta.2019.06.010

    Article  CAS  Google Scholar 

  26. C.V. Reddy, I.N. Reddy, B. Akkinepally, V.V.N. Harish, K.R. Reddy, S. Jaesool, Ceram. Int. 45, 15298–15306 (2019). https://doi.org/10.1016/j.ceramint.2019.05.020

    Article  CAS  Google Scholar 

  27. S. Hussain, N. Ullah, Y. Zhang, A. Shaheen, G. Qiao, Int. J. Hydrogen Energy 44, 24525–24533 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.190

    Article  CAS  Google Scholar 

  28. G. Liu, S. Bai, S. Hussain, K. Zhang, L. Lin, T. Li, C. He, Z. Xu, G. Qiao, Inorg. Chem. 58, 11110–11117 (2019). https://doi.org/10.1021/acs.inorgchem.9b01640

    Article  CAS  Google Scholar 

  29. S. Hussain, X.Y. Yang, M.K. Aslam, A. Shaheen, G. Qiao, Chem. Eng. J. 391, 123595 (2019). https://doi.org/10.1016/j.cej.2019.123595

    Article  CAS  Google Scholar 

  30. Y. Li, X. Han, T. Yi, Y. He, X. Li, J. Energy Chem. 31, 54–78 (2018). https://doi.org/10.1016/j.jechem.2018.05.010

    Article  Google Scholar 

  31. N. Zhao, H. Fan, M. Zhang, J. Ma, W. Zhang, C. Wang, H. Li, X. Jiang, X. Cao, Electrochim. Acta. 321, 134681 (2019). https://doi.org/10.1016/j.electacta.2019.134681

    Article  CAS  Google Scholar 

  32. Y. Ouyang, R. Huang, X. Xia, H. Ye, X. Jiao, L. Wang, W. Lei, Q. Hao, Chem. Eng. J. 355, 416–427 (2018). https://doi.org/10.1016/j.cej.2018.08.142

    Article  CAS  Google Scholar 

  33. F. Yang, K. Zhang, W. Li, K. Xu, J. Colloid Interface Sci. 556, 386–391 (2019). https://doi.org/10.1016/j.jcis.2019.08.078

    Article  CAS  Google Scholar 

  34. Z. Liu, Q. Xu, J. Wang, N. Li, S. Guo, Y. Su, H. Wang, J. Zhang, S. Chen, Int. J. Hydrogen Energy. 38, 6657–6662 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.092

    Article  CAS  Google Scholar 

  35. S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M. Wang, G. Liu, G. Qiao, Ceram. Int. 45, 15164–15170 (2019). https://doi.org/10.1016/j.ceramint.2019.04.258

    Article  CAS  Google Scholar 

  36. M. Haripriya, R. Sivasubramanian, A.M. Ashok, S. Hussain, G. Amarendra, J. Mater. Sci.: Mater. Electron. 30, 7497–7506 (2019). https://doi.org/10.1007/s10854-019-01063-z

    Article  CAS  Google Scholar 

  37. B. Ash, R.K. Paramguru, B.K. Mishra, Electrochem. Commun. 12, 48–51 (2009). https://doi.org/10.1016/j.elecom.2009.10.033

    Article  CAS  Google Scholar 

  38. K. Sahu, A.K. Kar, Mater. Sci. Semicond. Process. 104, 104648 (2019). https://doi.org/10.1016/j.mssp.2019.104648

    Article  CAS  Google Scholar 

  39. M. Mirzaee, C. Dehghanian, Mater. Res. Bull. 109, 10–20 (2018). https://doi.org/10.1016/j.materresbull.2018.09.020

    Article  CAS  Google Scholar 

  40. B. Cui, H. Lin, J.B. Li, X. Li, J. Yang, J. Tao, Adv. Funct. Mater. 18, 1440–1447 (2007). https://doi.org/10.1002/adfm.200700982

    Article  CAS  Google Scholar 

  41. M. Martínez-Gil, M.I. Pintor-Monroy, M. Cota-Leal, D. Cabrera-German, A. Garzon-Fontecha, M.A. Quevedo-López, M. Sotelo-Lerma, Mater. Sci. Semicond. Process. 72, 37–45 (2017). https://doi.org/10.1016/j.mssp.2017.09.021

    Article  CAS  Google Scholar 

  42. R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, Z. Xu, Z. Song, Appl. Surf. Sci. 463, 721–731 (2018). https://doi.org/10.1016/j.apsusc.2018.08.172

    Article  CAS  Google Scholar 

  43. N. Cai, J. Fu, V. Chan, M. Liu, W. Chen, J. Wang, H. Zeng, F. Yu, J. Alloys Compd. 782, 251–262 (2018). https://doi.org/10.1016/j.jallcom.2018.12.044

    Article  CAS  Google Scholar 

  44. M. Kuang, W. Zhang, X.L. Guo, L. Yu, Y.X. Zhang, Ceram. Int. 40, 10005–10011 (2014). https://doi.org/10.1016/j.ceramint.2014.02.099

    Article  CAS  Google Scholar 

  45. H. Gao, Y. Cao, Y. Chen, Z. Liu, M. Guo, S. Ding, J. Tu, J. Qi, Appl. Surf. Sci. 465, 929–936 (2018). https://doi.org/10.1016/j.apsusc.2018.09.180

    Article  CAS  Google Scholar 

  46. P. Wang, H. Zhou, C. Meng, Z. Wang, K. Akhtar, A. Yuan, Chem. Eng. J. 369, 57–63 (2019). https://doi.org/10.1016/j.cej.2019.03.080

    Article  CAS  Google Scholar 

  47. X. Wang, B. Shi, F. Huang, Y. Fang, F. Rong, R. Que, J. Alloys Compd. 767, 232–240 (2018). https://doi.org/10.1016/j.jallcom.2018.07.074

    Article  CAS  Google Scholar 

  48. Y. Teng, Y. Huo, S. Li, X. Niu, N. Fan, Z. Su, J. Alloys Compd. 784, 712–719 (2018). https://doi.org/10.1016/j.jallcom.2018.12.351

    Article  CAS  Google Scholar 

  49. T. Zhou, X. Liu, R. Zhang, Y. Wang, T. Zhang, A.C.S. Appl, Mater. Interfaces 10, 37242–37250 (2018). https://doi.org/10.1021/acsami.8b12981

    Article  CAS  Google Scholar 

  50. F.X. Ma, L.E. Yu, C.Y. Xu, X.W. Lou, Energy Environ. Sci. 9, 862–866 (2016). https://doi.org/10.1039/C5EE03772G

    Article  CAS  Google Scholar 

  51. J. Ye, S. Tao, S. Li, D. Tang, J. Wang, H. Xu, J. Nat. Gas Sci. Eng. 70, 102940 (2019). https://doi.org/10.1016/j.jngse.2019.102940

    Article  CAS  Google Scholar 

  52. X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Nano Energy 31, 410–417 (2016). https://doi.org/10.1016/j.nanoen.2016.11.035

    Article  CAS  Google Scholar 

  53. M. Tamaddoni Saray, H. Hosseini, Electrochim. Acta. 222, 505–517 (2016). https://doi.org/10.1016/j.electacta.2016.11.003

    Article  CAS  Google Scholar 

  54. X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Chem. Eng. J. 344, 311–319 (2018). https://doi.org/10.1016/j.cej.2018.03.061

    Article  CAS  Google Scholar 

  55. X. Li, Y. Liu, Z. Jin, P. Li, X. Chen, D. Xiao, Electrochim. Acta. 345, 335–344 (2018). https://doi.org/10.1016/j.electacta.2018.11.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the key research project in science and technology of the education department Si Chuan Province (15ZA0117) & Southwest university of science and technology Longshan academic talent research support program (18LZX403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatang Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Dai, Y., Lu, J. et al. Hydrothermal synthesis of NiO/NiCo2O4 nanomaterials for applications in electrochemical energy storage. J Mater Sci: Mater Electron 33, 354–366 (2022). https://doi.org/10.1007/s10854-021-07305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07305-3

Navigation