Skip to main content

Advertisement

Log in

Electrochemical properties of Mo0.7Co0.3S2/g-C3N4 nanocomposites prepared by solvothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the development of MoS2 as supercapacitor electrode material has been widely reported, and most of them adopt a single method to improve the electrochemical performance of MoS2. Pure MoS2 has poor intrinsic conductivity and easy aggregation, which impedes its electrochemical performance and greatly limits its practical application. In this paper, Co-doped MoS2 was used as the substrate to compound with g-C3N4 to improve the electrochemical performance of MoS2. Mo0.7Co0.3S2/g-C3N4 nanocomposites with different mass ratio were successfully synthesized via solvothermal method. The effects of different ratios on the microstructure and electrochemical properties of samples were studied by a series of tests. The experimental results indicate that Mo0.7Co0.3S2/g-C3N4 nanocomposites are hexagonal structure with good crystallization, the morphologies are mainly nanosheet structure, and Mo0.7Co0.3S2 nanoparticles are uniformly embedded on the surface of g-C3N4 nanosheets. Mo0.7Co0.3S2/g-C3N4 nanocomposites show pseudocapacitance behavior and excellent electrochemical performance, in particular, MCS/CN-2 electrodes (mass ratio of Mo0.7Co0.3S2:g-C3N4 is 9:1) exhibit the best electrochemical performance. This work improves the performance of MoS2 as electrode material of supercapacitor material through doping modification and composite of carbon material and provides reference value for subsequent research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Wang, F. Liu, B. Zhao, Y. Ning, L. Zhang, R. Bradley, W. Wu, A.C.S. Appl, Nano Mater. 3, 6448 (2020)

    CAS  Google Scholar 

  2. Y. Wang, Y. Xie, J. Alloys Compd. 824, 153936 (2020)

    CAS  Google Scholar 

  3. A.M. Abraham, S.P. Lonkar, V.V. Pillai, S.M. Alhassan, ACS Omega 5, 11721 (2020)

    CAS  Google Scholar 

  4. X. Mao, Y. Zou, F. Xu, L. Sun, H. Chu, H. Zhang, J. Zhang, C. Xiang, A.C.S. Appl, Mater. Interfaces 13, 22664 (2021)

    CAS  Google Scholar 

  5. X. Zheng, X. He, J. Jiang, Z. Jia, Y. Li, Z. Wei, H. Yang, NANO 15, 2050136 (2020)

    CAS  Google Scholar 

  6. M.B. Wazir, M. Daud, N. Ullah, A. Hai, A. Muhammad, M. Younas, M. Rezakazemi, Int. J. Hydrogen Energy 44, 17470 (2019)

    CAS  Google Scholar 

  7. L. Yue, X. Wang, T. Sun, H. Liu, Q. Li, N. Wu, H. Guo, W. Yang, Chem. Eng. J. 375, 121959 (2019)

    CAS  Google Scholar 

  8. L. Wan, J. Liu, X. Li, Y. Zhang, J. Chen, C. Du, M. Xie, Int. J. Hydrogen Energy 45, 4521 (2020)

    CAS  Google Scholar 

  9. X. Xu, T. Wei, R. Xiong, Z. Zhang, X. Zhang, S. Qiao, Q. Li, Y. Hu, Surf. Coatings Technol. 413, 127085 (2021)

    CAS  Google Scholar 

  10. D. Kesavan, V.K. Mariappan, P. Pazhamalai, K. Krishnamoorthy, S.-J. Kim, J. Colloid Interface Sci. 584, 714 (2021)

    CAS  Google Scholar 

  11. Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu, L. Mai, Y. Yu, Adv. Energy Mater. 9, 1901081 (2019)

    Google Scholar 

  12. H.N. Fard, G.B. Pour, M.N. Sarvi, P. Esmaili, Ionics 25, 2951 (2019)

    CAS  Google Scholar 

  13. Yu.M. Volfkovich, Russ J Electrochem 57, 311 (2021)

    CAS  Google Scholar 

  14. W. Zhao, Z. Wei, X. Zhang, M. Ding, S. Huang, Mater. Res. Bull. 124, 110749 (2020)

    CAS  Google Scholar 

  15. P. Sharma, V. Kumar, Journal of Elec Materi 49, 3520 (2020)

    CAS  Google Scholar 

  16. W. Zhao, Z. Wei, X. Zhang, M. Ding, S. Huang, S. Yang, Appl. Catal. A 593, 117443 (2020)

    CAS  Google Scholar 

  17. S. Huang, X. Zhu, S. Sarkar, Y. Zhao, APL Mater. 7, 100901 (2019)

    Google Scholar 

  18. M. Sledzinska, G. Jumbert, M. Placidi, A. Arrighi, P. Xiao, F. Alzina, C.M. Sotomayor Torres, ACS Appl. Electron. Mater. 2, 1169 (2020)

    CAS  Google Scholar 

  19. X. Zhao, Z. Liu, W. Xiao, H. Huang, L. Zhang, Y. Cheng, J. Zhang, A.C.S. Appl, Nano Mater. 3, 7580 (2020)

    CAS  Google Scholar 

  20. X. Yang, B. Li, Nanophotonics 9, 1557 (2020)

    CAS  Google Scholar 

  21. Y. Wang, Y. Ma, J. Shi, X. Yan, J. Luo, H. Zhu, K. Jia, J. Li, C.Y. Zhang, Front. Chem. 8, 741 (2020)

    CAS  Google Scholar 

  22. X. Chen, A.M. Krajewska, C. McGuinness, A. Lynes, D. McAteer, N. Berner, G. Duesberg, J.N. Coleman, A.R. McDonald, Chem. Eur. J. 27, 984 (2021)

    CAS  Google Scholar 

  23. L. Li, D. Zhang, Y. Gao, J. Deng, Y. Gou, J. Fang, J. Alloys Compd. 862, 158551 (2021)

    CAS  Google Scholar 

  24. J. Joyner, E.F. Oliveira, H. Yamaguchi, K. Kato, S. Vinod, D.S. Galvao, D. Salpekar, S. Roy, U. Martinez, C.S. Tiwary, S. Ozden, P.M. Ajayan, A.C.S. Appl, Mater. Interfaces 12, 12629 (2020)

    CAS  Google Scholar 

  25. Y. Chen, J. Rong, Q. Tao, C. Xing, M. Lian, J. Cheng, X. Liu, J. Cao, M. Wei, S. Lv, P. Zhu, L. Yang, J. Yang, Electrochim. Acta 357, 136868 (2020)

    CAS  Google Scholar 

  26. X. Wang, H. Li, H. Li, S. Lin, W. Ding, X. Zhu, Z. Sheng, H. Wang, X. Zhu, Y. Sun, Adv. Funct. Mater. 30, 0190302 (2020)

    CAS  Google Scholar 

  27. K. Yao, Z. Xu, M. Ma, J. Li, F. Lu, J. Huang, Adv. Funct. Mater. 30, 2001484 (2020)

    CAS  Google Scholar 

  28. X. Guan, L. Zhao, P. Zhang, J. Liu, X. Song, L. Gao, Mater. Today Energy 16, 100379 (2020)

    Google Scholar 

  29. J. Shao, Y. Li, M. Zhong, Q. Wang, X. Luo, K. Li, W. Zhao, Mater. Lett. 252, 173 (2019)

    CAS  Google Scholar 

  30. C. Wang, J. Li, X. Liu, Z. Cui, D.-F. Chen, Z. Li, Y. Liang, S. Zhu, S. Wu, Biomater. Sci. 8, 4216 (2020)

    CAS  Google Scholar 

  31. Z. Chang, X. Ju, P. Guo, X. Zhu, C. Liao, Y. Zong, X. Li, X. Zheng, J. Alloys Compd. 824, 153873 (2020)

    CAS  Google Scholar 

  32. S.S. Singha, S. Rudra, S. Mondal, M. Pradhan, A.K. Nayak, B. Satpati, P. Pal, K. Das, A. Singha, Electrochim. Acta 338, 135815 (2020)

    CAS  Google Scholar 

  33. S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, J. Alloys Compd. 853, 157060 (2021)

    CAS  Google Scholar 

  34. Y. Gong, M. Li, Y. Wang, Chemsuschem 8, 931 (2015)

    CAS  Google Scholar 

  35. S. Sanati, Z. Rezvani, Chem. Eng. J. 362, 743 (2019)

    CAS  Google Scholar 

  36. L. Bai, H. Huang, S. Zhang, L. Hao, Z. Zhang, H. Li, L. Sun, L. Guo, H. Huang, Y. Zhang, Adv. Sci. 7, 2001939 (2020)

    CAS  Google Scholar 

  37. W. Liu, M. Zhang, M. Li, B. Li, W. Zhang, G. Li, M. Xiao, J. Zhu, A. Yu, Z. Chen, Adv. Energy Mater. 10, 1903724 (2020)

    CAS  Google Scholar 

  38. B.A. Ali, A.H. Biby, N.K. Allam, Chem. Commun. 57, 3231 (2021)

    CAS  Google Scholar 

  39. I. Rabani, R. Zafar, K. Subalakshmi, H.-S. Kim, C. Bathula, Y.-S. Seo, J. Hazardous Mater. 407, 124360 (2021)

    CAS  Google Scholar 

  40. C. Murugan, M. Karnan, M. Sathish, A. Pandikumar, Catal. Sci. Technol. 10, 2427 (2020)

    CAS  Google Scholar 

  41. S. Yousefzadeh, J. Alloy. Compd. 785, 1 (2019)

    CAS  Google Scholar 

  42. F.N. Indah Sari, J.-M. Ting, Electrochim. Acta 320, 134533 (2019)

    CAS  Google Scholar 

  43. H. Liang, H. Xing, Z. Ma, H. Wu, Carbon 183, 138 (2021)

    CAS  Google Scholar 

  44. H. Liang, H. Xing, M. Qin, H. Wu, Compos. Part A Appl. Sci. Manuf. 135, 105959 (2020)

    CAS  Google Scholar 

  45. J. Liu, L. Zhang, D. Zang, H. Wu, Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202105018

    Article  Google Scholar 

  46. Y. Sun, J. Zhang, X. Sun, N. Huang, CrystEngComm 22, 1645 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51261015), Natural Science Foundation of Gansu Province, China (1308RJZA238), and HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wei.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Wei, Z., Liang, J. et al. Electrochemical properties of Mo0.7Co0.3S2/g-C3N4 nanocomposites prepared by solvothermal method. J Mater Sci: Mater Electron 32, 28152–28162 (2021). https://doi.org/10.1007/s10854-021-07193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07193-7

Navigation