Skip to main content

Advertisement

Log in

Synergic effect of Sn-doped TiO2 nanostructures for enhanced visible light photocatalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the recent years, metal oxides have attracted more interest for researchers because of their applications in energy and environmental domains. In the present work, the Sn-doped TiO2 nanoparticles were prepared by hydrothermal technique and the effect of Sn concentration has been investigated. The structural, morphological, surface composition, optical, and photocatalytic behavior were studied. XRD pattern revealed that doping of Sn makes the easy transformation of rutile from anatase phase at a lower temperature, providing the tetragonal structure of rutile TiO2. TEM analysis showed the formation of nanoparticles with sphere-like morphology with good crystallinity. From UV–Vis spectra, it is observed that optical absorption edge gets red-shifted upon Sn doping and the bandgap is found to be 2.6 eV. The photocatalytic activity of the synthesized nanoparticles has been investigated under visible light irradiation. Experimental results shows that 0.5wt% of Sn-doped nanoparticles exhibit improved photocatalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z.Y. Zhang, C.L. Shao, X.H. Li, L. Zhang, H.M. Xue, C.H. Wang, Y.C. Liu, Electro spun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity. J. Phys. Chem. C 114, 7920–7925 (2010)

    Article  CAS  Google Scholar 

  2. G. Yang, T. Wang, B. Yang, Z. Yan, S. Ding, T. Xiao, Enhanced visible-light activity of F-N co-doped TiO2 nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies. Appl. Surf. Sci. 287, 135–142 (2013)

    Article  CAS  Google Scholar 

  3. S. Pitchaimuthu, S. Rajalakshmi, Enhancement of zinc oxide-mediated solar light discoloration of Acid Yellow 99 dye by addition of b -CD. Appl. Water Sci. 2, 201–208 (2014)

    Google Scholar 

  4. G. Zhao, L. Liu, J. Li, Q. Liu, Efficient removal of dye MB: through the combined action of adsorption and photodegradation from NiFe2O4/Ag3PO4. J. Alloy. Compd. 664, 169–174 (2016)

    Article  CAS  Google Scholar 

  5. S.M. El-Dafrawy, M. Farag, S. Abd, E. Hakam, S.M. Hassan, Structural and catalytic properties of sulphated zirconia doped by Zn oxide. Egypt. J. Chem. 345, 329–345 (2017)

    Google Scholar 

  6. A.H. Hattab, A.I. Ahmed, S.M. Hassan, A.A. Ibrahim, Photocatalytic degradation of methylene blue by modified nanoparticles titania catalysts. Int. J. Mod. Chem. 7, 45–53 (2015)

    CAS  Google Scholar 

  7. S.M. El-Dafrawy, M. Farag, S.M. Hassan, Photodegradation of organic compounds using chromium oxide-doped nano-sulfated zirconia. Res. Chem. Intermed. 43, 6343–6365 (2017)

    Article  CAS  Google Scholar 

  8. M. Pelaeza, N.T. Nolanb, S.C. Pillai, M.K. Seeryc, P. Falarasd, D.D. Dionysiou et al., A review on the visible light active titanium dioxide photocatalysts for environmental application. Appl. Catal. 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  9. L. Pan, J.-J. Zou, X. Zhang, L. Wang, Water-Mediated Promotion of Dye Sensitization of TiO2 under Visible Light. J. Am. Chem. Soc. 133, 10000–10002 (2011)

    Article  CAS  Google Scholar 

  10. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)

    Article  CAS  Google Scholar 

  11. M. Huang, J. Yu, B. Li, L. Ch Deng, W. Wang, L. Wu, F. Dong, M.F. Zhang, Intergrowth and coexistence of TiO2-SnO2 nanocomposite with excellent photocatalytic activity. J. Alloy. Comp. 629, 55–61 (2015)

    Article  CAS  Google Scholar 

  12. K. Rubenis, J. Locs, J. Mironova, R.M. Meri, Influence of phase separation on thermal conductivity of Ti1-xSn x O2Ceramics. J. Ceram. Sci. Tech. 07(01), 135–138 (2016)

    Google Scholar 

  13. N. Kiraz, E. Burunkaya, O. Kesmez, H.E. Camurlu, M. Asilturk, Z. Yesil, E. Arpa, Preparation of Sn doped nanometric TiO2 powders by reflux and hydrothermal syntheses and their characterization. J. Sol-Gel Sci. Tech. 59, 381–386 (2011)

    Article  CAS  Google Scholar 

  14. J. Lin, J.C. Yu, D. Lo, S.K. Lam, Photocatalytic Activity of Rutile Ti1-xSnxO2 Solid Solutions. J. Catal. 183, 368–372 (1999)

    Article  CAS  Google Scholar 

  15. Y.F. Tu, S. Huang, J.P. Sang, X.W. Zou, Synthesis and photocatalytic properties of Sn- doped TiO2 nanotube arrays. J. Alloys Compd. 482, 382–387 (2009)

    Article  CAS  Google Scholar 

  16. D.G. Araque, P.A. Pena, D.R. Ortega, L.L. Rojas, R. Gomez, SnO2-TiO2 Structures and the Effect of CuO, CoO Metal Oxide in the Photocatalytic Hydrogen. Production (2017). https://doi.org/10.1002/jctb.5273

    Article  Google Scholar 

  17. D.R. Ortega, P.A. Pena, F. Tzompantzi, R. Arroyo, F. Gonzalez, I. Gonzalez, Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. J Mater Sci 52, 260–275 (2017)

    Article  CAS  Google Scholar 

  18. R. Sankar Ganesh, S.K. Sharma, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Growth, microstructure, structural and optical properties of PVP-capped CdS nanoflowers for efficient photocatalytic activity of Rhodamine B. Mater. Res. Bull. 94, 190–198 (2017)

    Article  CAS  Google Scholar 

  19. F.Z. Haque, R. Nandanwar, P. Singh, Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik 128, 191–200 (2017)

    Article  CAS  Google Scholar 

  20. K. Santhi, M. Navaneethan, S. Harish, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization Of TiO2 nanorods by hydrothermal method with different PH conditions and their photocatalytic activity. Appl. Surf. Sci. 500, 144058 (2020)

    Article  CAS  Google Scholar 

  21. R.N. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticlesusing fiber-optic sensor. Sensors and Actuators B 169, 199–207 (2012)

    Article  CAS  Google Scholar 

  22. Y. Cao, T. He, L. Zhao, E. Wang, W. Yang, Y. Cao, Structure and phase transition behavior of Sn4+ Doped TiO2 nanoparticles. J. Phys. Chem. C 113, 18121–18124 (2019)

    Article  CAS  Google Scholar 

  23. C.W. Soo, C.W. Lai, G.T. Pan, T.C.K. Yang, K.M. Lee, R.M. Yusop, J.C. Juan, Effects of various hydrogenated temperatures on photocatalytic activity of mesoporous Titanium dioxide. Micro & Nano Lett. 13(1), 77–82 (2018)

    Article  CAS  Google Scholar 

  24. Y. Cao, T. He, Y. Chen, Y. Cao, Fabrication of Rutile TiO2- Sn/Anatase TiO2-N Heterostructure and its application in visible light photocatalysis. J. Phys. Chem. C 114, 3627–3633 (2010)

    Article  CAS  Google Scholar 

  25. J. Li, X. Xu, X. Liu, C. Yu, D. Yan, Z. Sun, L. Pan, Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 679, 454–462 (2016)

    Article  CAS  Google Scholar 

  26. D.A. Solis-Casados, L. Escobar- Alarcon, L.M. Gomez- Olivan, E. Haro-Poniatowski, T. Klimova, Photodegradation of pharmaceutical drugs using Sn-modified TiO2 powders under visible light irradiation. Fuel 198, 3–10 (2017)

    Article  CAS  Google Scholar 

  27. M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, S. Ali, Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. International Nano Letters 8, 1–8 (2018)

    Article  CAS  Google Scholar 

  28. I. Singh, B. Birajda, Synthesis, characterization and photocatalyticactivity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol–gel route. RSC Adv. 7, 54053–54062 (2017)

    Article  CAS  Google Scholar 

  29. T. Lan, X. Tang, B. Fultz, Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations. Phys. Rev. B 85, 039405 (2012)

    Article  Google Scholar 

  30. U. Balachandran, N.G. Eror, Raman spectra of Titanium Dioxide. J. Solid State Chem. 42, 276–282 (1982)

    Article  CAS  Google Scholar 

  31. T. Ali, A. Ahmed, U. Alam, P. Imran Uddin, M.M. Tripathi, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212, 325–335 (2018)

    Article  CAS  Google Scholar 

  32. Y. Wang, K. Nomura, X. Liu, A.I. Rykov, C. Jin, T. Liu, J. Wang, Structural and Magnetic Properties of 57Fe-Doped TiO2 and 57Fe/Sn-Co-doped TiO2 Prepared by a Soft-Chemical Process. Eur. J. Inorg. Chem. 2016, 2131–2135 (2016)

    Article  CAS  Google Scholar 

  33. Y. Wang, Y. Zhang, F. Yu, C. Jin, X. Liu, J. Ma, Y. Wang, Y. Huang, J. Wang, Correlation investigation on the visible-light-driven photocatalytic activity and coordination structure of rutile Sn-Fe-TiO2nanocrystallites for methylene blue degradation. Catal. Today. 258, 112–119 (2015)

    Article  CAS  Google Scholar 

  34. A. Arunachalam, S. Dhanapandian, C. Manoharan, Effect of Sn doping on the structural, optical and electricalproperties of TiO2 films prepared by spray pyrolysis. J Mater Sci: Mater Electron 27, 659–676 (2016)

    CAS  Google Scholar 

  35. S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2nanoparticles. Ceram. Int. 44, 6201–6211 (2018)

    Article  CAS  Google Scholar 

  36. M. Huang, S. Yu, B. Lin, L. Dongn, F. Zhang, M. Fan, L. Wang, J. Yu, C. Deng, Influence of preparation methods on the structure and catalytic performance of SnO2-doped TiO2 photocatalysts. Ceram. Int. 40, 13305–13312 (2014)

    Article  CAS  Google Scholar 

  37. H.A. Alhadrami, A. Baqasi, J. Iqbal, R.A.M. Shoudri, A.M. Ashshi, E.I. Azhar, F. Al-Hazmi, A. Al-Ghamdi, S. Wageh, Antibacterial applications of anatase TiO2 nanoparticle. Am. J. Nanomater. 5, 31–42 (2017)

    Article  CAS  Google Scholar 

  38. C.M. Magdalane, K. Kanimozhi, M.V. Arularasu, G. Ramalingam, K. Kaviyarasu, Self-cleaning mechanism of synthesized SnO2/ TiO2 nanostructure for photocatalytic application for wastewater treatment. Surf. Interfaces. 17, 100346 (2019)

    Article  CAS  Google Scholar 

  39. X. Zhu, L. Pei, R. Zhu, Y. Jiao, R. Tang, W. Feng, Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci. Rep. 8, 12387 (2018)

    Article  CAS  Google Scholar 

  40. F. Akhtari, S. Zorriasatein, Majid Farahmandjou and Seyed Mohammad Elahi, Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Mater. Res. Express 5, 065015 (2018)

    Article  CAS  Google Scholar 

  41. S. Ehsan, H. Yeganeh, M. Kazazi, B.K. Kaleji, S.H. Kazemi, B. Hosseinzadeh, Electrophoretic deposition of Sn-doped TiO2 nanoparticles and its optical and photocatalytic properties, J. Mater. Sci.: Mater. Electron 29, 10841–10852 (2018)

    Google Scholar 

  42. X. Li, R. Xiong, G. Wei, Preparation and photocatalytic activity of nanoglued Sn-doped TiO2. J. Hazard. Mater. 164(2–3), 587–591 (2009)

    Article  CAS  Google Scholar 

  43. R. Nirmala, H.Y. Kim, R. Navamathavan, C. Yi, J.J. Won, K. Jeon, A. Yousef, R. Afeesh, M. El-Newehy, Photocatalytic activities of electrospun tin oxide doped titanium dioxide nanofibers. Ceram. Inter. 38(6), 4533–4540 (2012)

    Article  CAS  Google Scholar 

  44. A. Kadam, R. Dhabbe, D.S. Shin, K. Garadkar, Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Inter. 43(6), 5164–5172 (2017)

    Article  CAS  Google Scholar 

  45. G. Sauthier, E. György, A. Figueras, R.S. Sánchez, J. Hernando, Laser Synthesis and characterization of nitrogen-doped TiO2 vertically aligned columnar array photocatalysts. J. Phys. Chem. C 116(27), 14534–14540 (2012)

    Article  CAS  Google Scholar 

  46. H. Shi, M. Zhou, D. Song, XiaojunPan, Jiecai Fu, Jinyuan Zhou, Shuyi Ma, Tao Wang, Highly porous SnO2/TiO2 electrospun nano fibers with high photocatalytic activities. Ceram. Inter. 40(7), 10383–10393 (2014)

    Article  CAS  Google Scholar 

  47. S. Prabakaran, K.D. Nishaa, J. Harish, M. Archana, S. Navaneethan, C. Ponnusamy, Y.H. Muthamizhchelvan, Effect of Al doping on the electrical and optical properties of TiO2 embedded Graphene Oxide nanosheets for opto-electronic applications. Appl. Surf. Sci 449, 332–339 (2018)

    Article  CAS  Google Scholar 

  48. M. Sun, W. Kong, Y. Zhao, X. Liu, J. Xuan, Y. Liu, F. Jia, G. Yin, J. Wang, J. Zhang, Improving photocatalytic degradation activity of organic pollutant by Sn4+Doping of Anatase TiO2 hierarchical nanospheres with dominant 001 facets. Nanomaterials 9, 1603 (2019)

    Article  CAS  Google Scholar 

  49. G. Mathankumar, P. Bharathi, M. Krishna Mohan, S. Harish, M. Navaneethan, J. Archana, P. Suresh, G.K. Mani, P. Dhivya, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and functional properties of nanostructured Gd-doped WO3/TiO2composites for sensing applications. Mater. Sci. Semicond. Process. 105, 104732 (2020)

    Article  CAS  Google Scholar 

  50. F.E. Oropeza, B. Davies, R.G. Palgrave, R.G. Egdell, Electronic basis of visible region activity in high area Sn-doped rutileTiO2 photocatalysts. Phys. Chem. Chem. Phys. 13, 7882–7891 (2011)

    Article  CAS  Google Scholar 

  51. G. Fu, Y. Yang, G. Wei, X. Shu, N. Qiao, L. Deng, Influence of Sn doping on phase transformation and crystallite growth of TiO2 nanocrystals. J. Nanomaterials 2014, 1–5 (2014)

    Google Scholar 

  52. R. Nadarajan, W. Azelee, W.A. Bakar, R. Ali, R. Ismail, Photocatalytic degradation of 1,2-dichlorobenzene using immobilized TiO2/ SnO2/WO3 photocatalyst under visible light: application of response surface methodology. Arab. J. Chem. 11(1), 34–47 (2016)

    Article  CAS  Google Scholar 

  53. A. Farhadi, M.R. Mohammadi, M. Ghorbani, On the assessment of photocatalytic activity and charge carrier mechanism of TiO2@SnO2 core-shell nanoparticles for water decontamination. J. Photochem. Photobiol. A 338, 171–177 (2017)

    Article  CAS  Google Scholar 

  54. S. Jiao, G. Lian, L. Jing, Z. Xu, Q. Wang, D. Cui, C.P. Wong, Sn-Doped rutile TiO2 hollow nanocrystals with enhanced lithiumion batteries performance. ACS Omega 3, 1329–1337 (2018)

    Article  CAS  Google Scholar 

  55. Z. Xiufeng, L. Juan, L. Lianghai, W. Zuoshan, Preparation of Crystalline Sn-Doped TiO2 and Its Application inVisible-Light Photocatalysis. J. Nanomaterials 2014, 1–5 (2011)

    Article  CAS  Google Scholar 

  56. S. Ghafoor, S. Ata, N. Mahmood, S.N. Arshad, Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-003667

    Article  Google Scholar 

  57. S.R. Sanivarapu, J.B. Lawrence, G. Sreedhar, Role of Surface Oxygen Vacancies and Lanthanide ContractionPhenomenon of Ln(OH)3(Ln = La, Pr, and Nd) in Sulfide-MediatedPhotoelectrochemical Water Splitting. ACSOmega 3, 6267–6278 (2018)

    CAS  Google Scholar 

  58. S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Preparation and characterization of SnO2 doped TiO2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity. Journal of Science: Advanced Materials and Devices 4, 400–412 (2019)

    Google Scholar 

  59. M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. J. Hazard Mater. 154, 1141–1148 (2008)

    Article  CAS  Google Scholar 

  60. S. Amreetha, S. Dhanuskodi, A. Nithya, K. Jothivenkatachalam, Three Way Electron Transfer of C-N-S Tri Doped Two-Phase Junction of TiO2 Nanoparticles for Efficient Visible Light Photocatalytic Dye Degradation. RSC Adv. (2016). https://doi.org/10.1039/C5RA25017J

    Article  Google Scholar 

  61. D.P. Jaihindh, C.C. Chen, Y.P. Fu, Reduced graphene oxide-supported Ag-loaded Fedoped TiO2 for the degradation mechanism of methylene blue and its electrochemical properties. RSC Adv. 8, 6488 (2018)

    Article  CAS  Google Scholar 

  62. T. Ali, P. Tripathi, W.R. AmeerAzam, A.A. ArhamSAhmed, M. Muneer, Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express. 4, 015022 (2017)

    Article  CAS  Google Scholar 

  63. N.C. Castillo, A. Heel, T. Graule, C. Pulgarin, Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Applied Catalysis B 95(3–4), 335–347 (2010)

    Article  CAS  Google Scholar 

  64. X. Li, R. Xiong, G. Wei, Preparation and photocatalytic activity of nanoglued Sn-doped TiO2. J. Hazard Mater. 164, 587–591 (2009)

    Article  CAS  Google Scholar 

  65. J. Du, G. Zhao, H. Pang, Y. Qian, H. Liu, D.J. Kang, A template method for synthesis of porous Sn-doped TiO2 monolith and its enhanced photocatalytic activity. Mater. Lett. 93, 419–422 (2013)

    Article  CAS  Google Scholar 

  66. S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Surface acidity, catalytic and photocatalytic activities of new type H3PW12O40/Sn-TiO2 nanoparticles. Colloids Surf. A 577, 147–157 (2019)

    Article  CAS  Google Scholar 

  67. F. Sayılkan, M. Asilturk, P. Tatar, N. Kiraz, E. Arpac, H. Sayılkan, Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights. J. Hazard Mater. 144, 140–146 (2007)

    Article  CAS  Google Scholar 

  68. N. Karthikeyan, V. Narayanan, A. Stephen, Degradation of textile effluent using nanocomposite TiO2/SnO2 semiconductor photocatalysts. Int. J. ChemTech Res. 8(11), 443–449 (2015)

    CAS  Google Scholar 

  69. P.D. Bhange, S.V. Awate, R.S. Gholap, G.S. Gokavi, D.S. Bhange, Photocatalytic degradation of methyleneblue on Sn-doped titaniananoparticles synthesized by solution combustion route. Mater. Res. Bull. 76, 264–272 (2016)

    Article  CAS  Google Scholar 

  70. E.M. Bayan, T.G. Lupeiko, Synthesis and photocatalytic properties of Sn–TiO2 nanomaterials. Adv. Dielect. 10, 2060018 (2020)

    Article  CAS  Google Scholar 

  71. N. Kiraz, E. Burunkaya, O. Kesmez, H.E. Camurlu, M. Asiltürk, Z. Yeşil, E. Arpaç, Preparation of Sn doped nanometric TiO2 powders by reflux and hydrothermal syntheses and their characterization. J. Sol-Gel Sci. Technol. (2011). https://doi.org/10.1007/s10971-011-2515-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Harish or S. Ponnusamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhi, K., Harish, S., Navaneethan, M. et al. Synergic effect of Sn-doped TiO2 nanostructures for enhanced visible light photocatalysis. J Mater Sci: Mater Electron 33, 9066–9084 (2022). https://doi.org/10.1007/s10854-021-07138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07138-0

Navigation