Skip to main content
Log in

Tungsten disulfide quantum dots (WS2 QDs) as a fluorescence probe for detection of dopamine (DA)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Imbalance in the levels of dopamine as a neurotransmitter has led to several physiological and psychological disorders; therefore detection of dopamine in patients is necessary to regulate body functions. A simple, high-performance method for determination of dopamine levels in real samples using a tungsten disulfide compound was employed. Tungsten disulfide(WS2) was synthesized by hydrothermal method using tungsten nitrate and thiourea and characterized by Transmission electron microscopy(TEM), Scanning electron microscopy(SEM), energy-dispersive X-Ray(EDX), energy-dispersive X-ray mapping analysis, and Fourier transform infrared(FTIR). The intensity of fluorescence quenching of this compound was tested in the presence of different molecules, but the amount of fluorescence decreased only with increasing dopamine. Therefore, such a quenching effect can be used to selectively detect dopamine (DA). The probe has a linear response range in the 50 μM to 450 μM with a detection limit of 20 µM (at S/N = 3). It was successfully applied to the determination of dopamine (DA) in spiked to serum samples. The mechanism of dopamine measurement using tungsten is such that WS2 as a catalyst and due to the active sites on its surface converts dopamine to form thin (poly-dopamine), which is placed on the surface of WS2 and causes fluorescence intensity to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Zhang, G.-D. Jin, D. Chen, X.-Y. Hu, Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly (acid chrome blue K) modified glassy carbon electrode. Sens. Actuators B Chem. 138(1), 174–181 (2009)

    Article  CAS  Google Scholar 

  2. S. Reyes, Y. Fu, K.L. Double, V. Cottam, L.H. Thompson, D. Kirik, G. Paxinos, C. Watson, H.M. Cooper, G.M. Halliday, Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol. Aging 34(3), 873–886 (2013)

    Article  CAS  Google Scholar 

  3. P.W.C. Cheng, W.C. Chang, G.G. Lo, K.W.S. Chan, H.M.E. Lee, L.M.C. Hui, Y.N. Suen, Y.L.E. Leung, K.M.P.A. Yeung, S. Chen, The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology 45(11), 1870–1876 (2020)

    Article  CAS  Google Scholar 

  4. Y. Chen, Y. Shen, D. Sun, H. Zhang, D. Tian, J. Zhang, J.-J. Zhu, Fabrication of a dispersible graphene/gold nanoclusters hybrid and its potential application in electrogenerated chemiluminescence. Chem Commun 47(42), 11733–11735 (2011)

    Article  CAS  Google Scholar 

  5. X. Liu, J. Liu, Biosensors and sensors for dopamine detection. View 2(1), 20200102 (2021)

    Article  Google Scholar 

  6. Q. Huang, X. Lin, L. Tong, Q.-X. Tong, Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustain. Chem. Eng. 8(3), 1644–1650 (2020)

    Article  Google Scholar 

  7. Y. Zhao, S. Zhao, J. Huang, F. Ye, Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85(5), 2650–2654 (2011)

    Article  CAS  Google Scholar 

  8. L. Liu, S. Li, L. Liu, D. Deng, N. Xia, Simple, sensitive and selective detection of dopamine using dithiobis (succinimidylpropionate)-modified gold nanoparticles as colorimetric probes. Analyst 137(16), 3794–3799 (2012)

    Article  CAS  Google Scholar 

  9. H. Su, B. Sun, L. Chen, Z. Xu, S. Ai, Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal. Methods 4(12), 3981–3986 (2012)

    Article  CAS  Google Scholar 

  10. R.P. Nikolajsen, Å.M. Hansen, Analytical methods for determining urinary catecholamines in healthy subjects. Anal Chim Acta 449(1–2), 1–15 (2001)

    Article  CAS  Google Scholar 

  11. L. Zhang, N. Teshima, T. Hasebe, M. Kurihara, T. Kawashima, Flow-injection determination of trace amounts of dopamine by chemiluminescence detection. Talanta 50(3), 677–683 (1999)

    Article  CAS  Google Scholar 

  12. T. Goswami, A. Bheemaraju, A. Kataria, A. Nag, K. Sravani, S. Mishra, A.K. Mishra, Highly fluorescent water-soluble PTCA incorporated silver nano-cluster for sensing of dopamine. Mater Chem Phys 259, 124086 (2021)

    Article  CAS  Google Scholar 

  13. M. Louleb, L. Latrous, A. Rios, M. Zougagh, E. Rodriguez-Castellon, M. Algarra, J. Soto, Detection of dopamine in human fluids using N-doped carbon dots. ACS Appl. Nano Mater. 3(8), 8004–8011 (2020)

    Article  CAS  Google Scholar 

  14. S. Alwarappan, C. Liu, A. Kumar, C.-Z. Li, Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem Lett 114(30), 12920–12924 (2010)

    Article  CAS  Google Scholar 

  15. S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem Lett 113(20), 8853–8857 (2009)

    Article  CAS  Google Scholar 

  16. A. Barati, M. Shamsipur, H. Abdollahi, Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH. Anal Chim Acta 931, 25–33 (2016)

    Article  CAS  Google Scholar 

  17. M.-X. Wei, N. Wei, L.-F. Pang, X.-F. Guo, H. Wang, Determination of dopamine in human serum based on green-emitting fluorescence carbon dots. Opt Mater 118, 111257 (2021)

    Article  CAS  Google Scholar 

  18. G. Han, J. Cai, C. Liu, J. Ren, X. Wang, J. Yang, X. Wang, Highly sensitive electrochemical sensor based on xylan-based Ag@ CQDs-rGO nanocomposite for dopamine detection. Appl Surf Sci 541, 148566 (2021)

    Article  CAS  Google Scholar 

  19. C. Wang, H. Shi, M. Yang, Y. Yan, E. Liu, Z. Ji, J. Fan, A novel nitrogen-doped carbon quantum dots as effective fluorescent probes for detecting dopamine. J. Photochem. Photobiol. A 391, 112374 (2020)

    Article  CAS  Google Scholar 

  20. C. Ratlam, S. Phanichphant, S. Sriwichai, Development of dopamine biosensor based on polyaniline/carbon quantum dots composite. J. Polym. Res. 27(7), 1–12 (2020)

    Article  Google Scholar 

  21. Y. Liu, W. Li, P. Wu, C. Ma, X. Wu, M. Xu, S. Luo, Z. Xu, S. Liu, Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sens. Actuators B Chem. 281, 34–43 (2019)

    Article  CAS  Google Scholar 

  22. C. Zhao, Y. Jiao, J. Hua, J. Yang, Y. Yang, Hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for the detection of dopamine. J. Fluoresc. 28(1), 269–276 (2018)

    Article  CAS  Google Scholar 

  23. J. Zhao, L. Zhao, C. Lan, S. Zhao, Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sens. Actuators B Chem. 223, 246–251 (2016)

    Article  CAS  Google Scholar 

  24. V.K. Singh, P.K. Yadav, S. Chandra, D. Bano, M. Talat, S.H. Hasan, Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H 2 O 2 and glutathione in human blood serum. J. Mater. Chem. B 6(32), 5256–5268 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Medical Science, Faculty of Sciences, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran for their support for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nahid Haghnazari or Changiz Karami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, L., Haghnazari, N. & Karami, C. Tungsten disulfide quantum dots (WS2 QDs) as a fluorescence probe for detection of dopamine (DA). J Mater Sci: Mater Electron 32, 28042–28050 (2021). https://doi.org/10.1007/s10854-021-07098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07098-5

Navigation