Skip to main content

Advertisement

Log in

The impact of Au-decorated TiO2 nanoparticles on high performance and low 1/f noise in UV photodetector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a high-performance ultraviolet photodetector (UVPD) was elaborated using Cu/Au/TiO2/InGa structure. The chemically synthesized TiO2 nanoparticles (NPs) decorated with plasmonic Au NPs were prepared using the solvothermal synthesis route. Different characterization techniques in particular X-ray diffraction, transmission electron microscopy, high-resolution TEM, selected area electron diffraction, energy-dispersive X-ray fluorescence, diffuse reflectance, and photoluminescence are employed in this research. The dielectric characteristics have been emphasized the frequency and bias voltage effects on electric responses through dielectric measurement. The results revealed that Au-decorated TiO2 NPs present a giant permittivity and low dielectric loss. It was found that nanocomposites exhibited obvious photocurrent responses under illumination. The performance of our device was investigated by exposing it to a laser illumination wavelength of 375nm and at − 1 V. Under an intensity of 7.6mW, our UVPD exhibited a high responsivity of about 100A/W and a huge detectivity of 3.5 × 1014 Jones leads to a low noise equivalent power of 3.44 × 10–13 W.Hz−1/2. Furthermore, the rise time/the recovery time were 0.96 and 9.6 s, respectively. These results indicate that the Au-decorated TiO2 possesses significant photoelectric properties which can be exploited for the prospective photodetection application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016). https://doi.org/10.1038/nmat4599

    Article  CAS  Google Scholar 

  2. S. Abbas, J. Kim, All-metal oxide transparent photodetector for broad responses. Sens. Actuators A 303, 111835 (2020). https://doi.org/10.1016/j.sna.2020.111835

    Article  CAS  Google Scholar 

  3. T.T. Nguyen, M. Patel, J.W. Kim, W. Lee, J. Kim, Functional TiO2 interlayer for all-transparent metal-oxide photovoltaics. J. Alloys Compd. 816, 152602 (2020). https://doi.org/10.1016/j.jallcom.2019.152602

    Article  CAS  Google Scholar 

  4. V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl. Catal. B 244, 1021–1064 (2019). https://doi.org/10.1016/j.apcatb.2018.11.080

    Article  CAS  Google Scholar 

  5. I. Ben Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, Enhancement of dielectric properties of Ni and Co doped ZnO due to the oxygen vacancies for UV photosensors application. Phys. E 119, 114031 (2020). https://doi.org/10.1016/j.physe.2020.114031

    Article  CAS  Google Scholar 

  6. B. Deka Boruah, Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 1, 2059–2085 (2019). https://doi.org/10.1039/c9na00130a

    Article  CAS  Google Scholar 

  7. T. Fröschl, U. Hörmann, P. Kubiak, G. Kucerová, M. Pfanzelt, C.K. Weiss, R.J. Behm, N. Hüsing, U. Kaiser, K. Landfester, M. Wohlfahrt-Mehrens, High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 41, 5313–5360 (2012). https://doi.org/10.1039/c2cs35013k

    Article  CAS  Google Scholar 

  8. P. Joshna, A. Hazra, K.N. Chappanda, P.K. Pattnaik, S. Kundu, Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array. Semicond. Sci. Technol. (2020). https://doi.org/10.1088/1361-6641/ab52f1

    Article  Google Scholar 

  9. A. Garzon-Roman, C. Zuñiga-Islas, E. Quiroga-González, Immobilization of doped TiO2 nanostructures with Cu or In inside of macroporous silicon using the solvothermal method: morphological, structural, optical and functional properties. Ceram. Int. 46, 1137–1147 (2020). https://doi.org/10.1016/j.ceramint.2019.09.082

    Article  CAS  Google Scholar 

  10. S. Noothongkaew, O. Thumthan, K.S. An, Minimal layer graphene/TiO2 nanotube membranes used for enhancement of UV photodetectors. Mater. Lett. 218, 274–279 (2018). https://doi.org/10.1016/j.matlet.2018.02.033

    Article  CAS  Google Scholar 

  11. X. Zheng, Y. Sun, H. Qin, Z. Ji, H. Chi, Interface engineering on ZnO/Au based Schottky junction for enhanced photoresponse of UV detector with TiO2 inserting layer. J. Alloys Compd. 816, 152537 (2020). https://doi.org/10.1016/j.jallcom.2019.152537

    Article  CAS  Google Scholar 

  12. P. Phukan, P.P. Sahu, High performance UV photodetector based on metal-semiconductor-metal structure using TiO2-rGO composite. Opt. Mater. 109, 110330 (2020). https://doi.org/10.1016/j.optmat.2020.110330

    Article  CAS  Google Scholar 

  13. H. Wang, P. Qin, G. Yi, X. Zu, L. Zhang, W. Hong, X. Chen, A high-sensitive ultraviolet photodetector composed of double-layered TiO2 nanostructure and Au nanoparticles film based on Schottky junction. Mater. Chem. Phys. 194, 42–48 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.019

    Article  CAS  Google Scholar 

  14. N.D.M. Said, M.Z. Sahdan, A. Ahmad, I. Senain, A.S. Bakri, S.A. Abdullah, M.S. Rahim, Effects of Al doping on structural, morphology, electrical and optical properties of TiO2 thin film. AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4968383

    Article  Google Scholar 

  15. H. Wang, T. You, W. Shi, J. Li, L. Guo, Au/TiO 2/Au as a plasmonic coupling photocatalyst. J. Phys. Chem. C 116, 6490–6494 (2012). https://doi.org/10.1021/jp212303q

    Article  CAS  Google Scholar 

  16. A. Agrawal, S.H. Cho, O. Zandi, S. Ghosh, R.W. Johns, D.J. Milliron, Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 118, 3121–3207 (2018). https://doi.org/10.1021/acs.chemrev.7b00613

    Article  CAS  Google Scholar 

  17. E. Grabowska, M. Marchelek, M. Paszkiewicz-Gawron, A. Zaleska-Medynska, Metal Oxide Photocatalysts (Elsevier, Amsterdam, 2018)

    Book  Google Scholar 

  18. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 1–13 (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  CAS  Google Scholar 

  19. P. Jansanthea, W. Chomkitichai, J. Ketwaraporn, P. Pookmanee, S. Phanichphant, Flame spray pyrolysis synthesized gold-loaded titanium dioxide photocatalyst for degradation of Rhodamine B. J. Aust. Ceram. Soc. 55, 719–727 (2019). https://doi.org/10.1007/s41779-018-0283-3

    Article  CAS  Google Scholar 

  20. A. Mezni, M.M. Ibrahim, M. El-Kemary, A.A. Shaltout, N.Y. Mostafa, J. Ryl, T. Kumeria, T. Altalhi, M.A. Amin, Cathodically activated Au/TiO2 nanocomposite synthesized by a new facile solvothermal method: an efficient electrocatalyst with Pt-like activity for hydrogen generation. Electrochim. Acta. 290, 404–418 (2018). https://doi.org/10.1016/j.electacta.2018.08.083

    Article  CAS  Google Scholar 

  21. V. Madurai Ramakrishnan, S. Pitchaiya, N. Muthukumarasamy, K. Kvamme, G. Rajesh, S. Agilan, A. Pugazhendhi, D. Velauthapillai, Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC). Int. J. Hydrog. Energy 45, 27036–27046 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.018

    Article  CAS  Google Scholar 

  22. C. Tamuly, M. Hazarika, S.C. Borah, M.R. Das, M.P. Boruah, In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach. Colloids Surf. B 102, 627–634 (2013). https://doi.org/10.1016/j.colsurfb.2012.09.007

    Article  CAS  Google Scholar 

  23. I. Ben Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, L. Beji, High responsivity and 1/: F noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles. RSC Adv. 8, 32333–32343 (2018). https://doi.org/10.1039/c8ra05567j

    Article  CAS  Google Scholar 

  24. I. Ben Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, L. Beji, Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current. J. Mater. Sci. 30, 9444–9454 (2019). https://doi.org/10.1007/s10854-019-01276-2

    Article  CAS  Google Scholar 

  25. S. Mondal, D. Basak, Defect controlled tuning of the ratio of ultraviolet to visible light emission in TiO2 thin films. J. Lumin. 179, 480–486 (2016). https://doi.org/10.1016/j.jlumin.2016.07.046

    Article  CAS  Google Scholar 

  26. C.A. D’Amato, R. Giovannetti, M. Zannotti, E. Rommozzi, S. Ferraro, C. Seghetti, M. Minicucci, R. Gunnella, A. Di Cicco, Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO 2 for dye degradation in water solution. Appl. Surf. Sci. 441, 575–587 (2018). https://doi.org/10.1016/j.apsusc.2018.01.290

    Article  CAS  Google Scholar 

  27. V.M. Ramakrishnan, M. Natarajan, A. Santhanam, V. Asokan, D. Velauthapillai, Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Mater. Res. Bull. 97, 351–360 (2018). https://doi.org/10.1016/j.materresbull.2017.09.017

    Article  CAS  Google Scholar 

  28. L. Zhang, H. Qi, Y. Zhao, L. Zhong, Y. Zhang, Y. Wang, J. Xue, Y. Li, Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance. Appl. Surf. Sci. 498, 143855 (2019). https://doi.org/10.1016/j.apsusc.2019.143855

    Article  CAS  Google Scholar 

  29. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Cd-doping effect on morphologic, structural, magnetic and electrical properties of Ni0.6-xCdxMg0.4Fe2O4 spinel ferrite (0 ≤ x ≤ 0.4). J. Alloys Compd. 803, 964–970 (2019). https://doi.org/10.1016/j.jallcom.2019.06.339

    Article  CAS  Google Scholar 

  30. M. Jebli, C. Rayssi, N. Hamdaoui, S. Rabaoui, J. Dhahri, M. Ben Henda, I. Shaarany, Effect of Nb-doping on the structural and electrical properties of Ba0.97La0.02Ti1-xNb4x/5O3 ceramics at room temperature synthesized by molten-salt method. J. Alloys Compd. 784, 204–212 (2019). https://doi.org/10.1016/j.jallcom.2019.01.014

    Article  CAS  Google Scholar 

  31. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Effect of iron doping at Mn-site on complex impedance spectroscopy properties of Nd0.67Ba0.33MnO3perovskite. Phase Transit. 91, 316–331 (2018). https://doi.org/10.1080/01411594.2017.1382701

    Article  CAS  Google Scholar 

  32. I. Ben Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, Photoconduction, dielectric and photoluminescence properties of Cu2+: ZnO nanoparticles elaborated by a polyol method. Phase Transit. 93, 388–406 (2020). https://doi.org/10.1080/01411594.2020.1734201

    Article  CAS  Google Scholar 

  33. S. Sil, J. Datta, M. Das, R. Jana, S. Halder, A. Biswas, D. Sanyal, P.P. Ray, Bias dependent conduction and relaxation mechanism study of Cu5FeS4 film and its significance in signal transport network. J. Mater. Sci. 29, 5014–5024 (2018). https://doi.org/10.1007/s10854-017-8463-4

    Article  CAS  Google Scholar 

  34. J. Datta, M. Das, A. Dey, S. Halder, S. Sil, P.P. Ray, Network analysis of semiconducting Zn 1–x Cd x S based photosensitive device using impedance spectroscopy and current-voltage measurement. Appl. Surf. Sci. 420, 566–578 (2017). https://doi.org/10.1016/j.apsusc.2017.05.192

    Article  CAS  Google Scholar 

  35. W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Origin(s) of the apparent colossal permittivity in (In1/2Nb1/2)xTi1−xO2: clarification on the strongly induced Maxwell-Wagner polarization relaxation by DC bias. RSC Adv. 7, 95–105 (2017). https://doi.org/10.1039/c6ra26728a

    Article  CAS  Google Scholar 

  36. J. Robinson, K. Xi, R.V. Kumar, A.C. Ferrari, H. Au, M.-M. Titirici, A. Parra Puerto, A. Kucernak, S.D.S. Fitch, N. Garcia-Araez, Ce p te d M us pt. J. Phys. Energy 2, 1–31 (2020)

    Google Scholar 

  37. H. Saadi, Z. Benzarti, F.I.H. Rhouma, P. Sanguino, S. Guermazi, K. Khirouni, M.T. Vieira, Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-020-04923-1

    Article  Google Scholar 

  38. T. Ali, A. Ahmed, M. Naseem Siddique, P. Tripathi, Enhanced dielectric properties of Fe-substituted TiO2 nanoparticles. Phys. B 534, 1–4 (2018). https://doi.org/10.1016/j.physb.2018.01.009

    Article  CAS  Google Scholar 

  39. C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, H. Wang, Dielectric relaxations in rutile TiO2. J. Am. Ceram. Soc. 98, 148–153 (2015). https://doi.org/10.1111/jace.13250

    Article  CAS  Google Scholar 

  40. W. Chebil, A. Gokarna, A. Fouzri, N. Hamdaoui, K. Nomenyo, G. Lerondel, Study of the growth time effect on the structural, morphological and electrical characteristics of ZnO/p-Si heterojunction diodes grown by sol-gel assisted chemical bath deposition method. J. Alloys Compd. 771, 448–455 (2019). https://doi.org/10.1016/j.jallcom.2018.08.280

    Article  CAS  Google Scholar 

  41. N. Hamdaoui, I. Ben Elkamel, A. Mezni, R. Ajjel, L. Beji, Highly efficient, low cost, and stable self –powered UV photodetector based on Co2+:ZnO/Sn diluted magnetic semiconductor nanoparticles. Ceram. Int. 45, 17729–17736 (2019). https://doi.org/10.1016/j.ceramint.2019.05.342

    Article  CAS  Google Scholar 

  42. B.H. Kim, S.H. Kwon, H.H. Gu, Y.J. Yoon, Negative photoconductivity of WS2 nanosheets decorated with Au nanoparticles via electron-beam irradiation. Phys. E 106, 45–49 (2019). https://doi.org/10.1016/j.physe.2018.10.008

    Article  CAS  Google Scholar 

  43. N. Gogurla, A.K. Sinha, D. Naskar, S.C. Kundu, S.K. Ray, Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels. Nanoscale 8, 7695–7703 (2016). https://doi.org/10.1039/c6nr01494a

    Article  CAS  Google Scholar 

  44. M. Zhu, X. Li, X. Li, X. Zang, Z. Zhen, D. Xie, Y. Fang, H. Zhu, Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4944945

    Article  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/28), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejeh Hamdaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Amor, F., Hamdaoui, N., Mezni, A. et al. The impact of Au-decorated TiO2 nanoparticles on high performance and low 1/f noise in UV photodetector. J Mater Sci: Mater Electron 32, 27107–27120 (2021). https://doi.org/10.1007/s10854-021-07081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07081-0

Navigation