Skip to main content
Log in

Hydrothermal synthesis of Ce/Zr co-substituted BiFeO3: R3c-to-P4mm phase transition and enhanced room temperature ferromagnetism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile hydrothermal method was used for fabricating phase-pure Bi1−xCexFe1−xZrxO3 (x = 0.00, 0.03, 0.06) multiferroic ferrites, and the dependence of structural, optical, and magnetic properties on the composition have been investigated. The samples were investigated by X-ray diffraction, Raman and Fourier transform infrared spectroscopies, scanning electron microscopy, UV–Vis spectroscopy, and vibrating sample magnetometer at room temperature. Structural results show that the structure of Bi1−xCexFe1−xZrxO3 ferrites is indexed to a rhombohedral structure with the R3c space group. However, the weakening in the intensity, the expansion of the line-width of all bands, and some band shifts observed in Raman spectra indicate a structural transition from rhombohedral (R3c) to pseudo-tetragonal (P4mm) phase as the content of Ce/Zr increases. Also, a significantly enhanced intensity of the A1–2 mode in Raman spectra means that there is a novel behavior of magnetic anisotropy in the Ce/Zr co-substituted samples. A significant increase in optical bandgap with increasing of the Ce/Zr co-substitution suggests that the materials are suitable for technological applications. Magnetic properties of the samples show a magnetic transition from antiferromagnetic to ferromagnetic phase due to the presence of the rhombohedral to the tetragonal phase transition, and exchange interaction between the 4f orbitals of the Ce3+/Ce4+ and the 3d orbitals of the Fe3+/Fe2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Wang, H. Zheng, V. Nagarajan, B. Liu, S.B. Ogale, D. Viehland, V. Venugopalan, D.G. Schlom, M. Wutting, R. Ramesh, J.B. Neaton, U.V. Waghmare, N.A. Hill, K.M. Rabe, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  CAS  Google Scholar 

  2. D. Lebeugle, D. Colson, A. Forget, M. Viret, Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91(2), 022907 (2007)

    Article  CAS  Google Scholar 

  3. W. Wei et al., The magnetoelectric coupling in rhombohedral–tetragonal phases coexisted Bi0.84Ba0.20FeO3. Phys. B Condens. Matter 407(12), 2243–2246 (2012)

    Article  CAS  Google Scholar 

  4. B. Ruette et al., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B 69(6), 064114 (2004)

    Article  CAS  Google Scholar 

  5. A. Mukherjee, S. Basu, L.A.W. Green, N.T.K. Thanh, M. Pal, Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles. J. Mater. Sci. 50, 1891–1900 (2015)

    Article  CAS  Google Scholar 

  6. R. Irandoust, A. Gholizadeh, A comparative study of the effect of the non-magnetic and magnetic trivalent rare-earth ion substitutions on bismuth ferrite properties: Correlation between the crystal structure and physical properties. Solid State Sci. 101, 106142 (2020)

    Article  CAS  Google Scholar 

  7. L. Esmaili, A. Gholizadeh, The effect of Nd and Zr co-substitution on structural, magnetic and photocatalytic properties of Bi1−xNdxFe1−xZrxO3 nanoparticles. Mater. Sci. Semiconduct. Process. 118, 105179 (2020)

    Article  CAS  Google Scholar 

  8. M. Li, S. Yang, R. Shi, L. Li, R. Zhu, X. Li, Y. Cheng, X. Ma, J. Zhang, K. Liu, P. Yu, P. Gao, Engineering of multiferroic BiFeO3 grain boundaries with head-to-head polarization configurations. Sci. Bull. (2020). https://doi.org/10.1016/j.scib.2020.12.032

    Article  Google Scholar 

  9. F. Noori, A. Gholizadeh, Structural, optical, magnetic properties and visible light photocatalytic activity of BiFeO3/graphene oxide nanocomposites. Mater. Res. Express 6, 1250 (2019). https://doi.org/10.1088/2053-1591/ab6807

    Article  CAS  Google Scholar 

  10. X. Jiang, J. Sun, X. Chai, Y. Chen, W. Zhang, J. Jiang, A. Jiang, Large domain-wall current in BiFeO3 epitaxial thin films. Ceram. Int. 47, 10130–10136 (2021). https://doi.org/10.1016/j.ceramint.2020.12.161

    Article  CAS  Google Scholar 

  11. P. Suresh, B.K. Hazra, B.R. Kumar, T. Chakraborty, P.D. Babud, S. Srinath, Lattice effects on the multiferroic characteristics of (La, Ho) co-substituted BiFeO3. J. Alloys Compd. 863, 158719 (2021)

    Article  CAS  Google Scholar 

  12. M. Sahni, S. Mukhopadhyay, R.M. Mehra, S. Chauhan, P.C. Sati, M. Kumar, M. Singh, N. Kumar, Effect of Yb/Co co-dopants on surface chemical bonding states of BiFeO3 nanoparticles with promising photocatalytic performance in dye degradation. J. Phys. Chem. Solids 152, 109926 (2021)

    Article  CAS  Google Scholar 

  13. N.P. Samantray, R.N.P. Choudhary, Studies of structural, dielectric and impedance spectroscopy of Ca/Zr modified BiFeO3 ceramics. Mater. Chem. Phys. 260, 124115 (2021)

    Article  CAS  Google Scholar 

  14. M. Akhtar, S. Saba, S. Arif, G.M. Mustafa, A. Khalid, G. Ali, S. Atiq, Efficient magnetoelectric dispersion in Ni and Co co-doped BiFeO3 multiferroics. Physica B 602, 412572 (2021)

    Article  CAS  Google Scholar 

  15. R. Ahmed, R.J. Si, S. Rehman, Y. Yu, Q.J. Li, C. Wang, High dielectric constant and low temperature ferroelectric-phase-transition in Ca, Pb co-doped BiFeO3. Results Phys. 20, 103623 (2021)

    Article  Google Scholar 

  16. Y. Li, L. Liu, D. Wang, H. Zhang, H. Zhang, X. He, Q. Li, The local structure and exchange bias effect of (Ho, Co)-codoped BiFeO3 investigated by XAFS spectroscopy. Physica B 604, 412709 (2021)

    Article  CAS  Google Scholar 

  17. C. Tian, Q. Yao, Z. Tong, G. Rao, J. Deng, Z. Wang, J. Wang, H. Zhou, J. Zhao, The influence of Nd substitution on microstructural, magnetic, and microwave absorption properties of BiFeO3 nanopowders. J. Alloys Compd 859, 157757 (2021)

    Article  CAS  Google Scholar 

  18. D.V. Karpinsky, A. Pakalniškis, G. Niaura, D.V. Zhaludkevich, A.L. Zhaludkevich, S.I. Latushka, M. Silibin, M. Serdechnova, V.M. Garamus, A. Lukowiak, W. Stręk, M. Kaya, R. Skaudžius, A. Kareiva, Evolution of the crystal structure and magnetic properties of Sm-doped BiFeO3 ceramics across the phase boundary region. Ceram. Int. 47, 5399–5406 (2021)

    Article  CAS  Google Scholar 

  19. A.S. Naeimi, E. Dehghan, D. Sanavi Khoshnoud, A. Gholizadeh, Enhancment of ferromagnetism in Ba and Er co-doped BiFeO3 nanoparticles. J. Magn. Magn. Mater. 393, 502–507 (2015)

    Article  CAS  Google Scholar 

  20. M. Arora, S. Chauhan, P.C. Sati, M. Kuma, Effect of non-magnetic ions substitution on structural, magnetic and optical properties of BiFeO3 nanoparticles. J. Supercond. Nov. Magn. 27, 1867–1871 (2014)

    Article  CAS  Google Scholar 

  21. Z. Quan, Hu. Hao, Xu. Sheng, W. Liu, G. Fang, M. Li, X. Zhao, Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process. J. Sol-Gel Sci. Technol. 48, 261–266 (2008)

    Article  CAS  Google Scholar 

  22. X. Zhang, M. Gao, Gu. Yueliang, H. Bao, X. Li, X. Zhou, W. Wen, The structure−property investigation of Bi1−xCexFeO3 (x = 0, 0.05)−Li battery. In situ XRD and XANES studies. J. Phys. Chem. C 116, 20230–20238 (2012)

    Article  CAS  Google Scholar 

  23. J. Liu, M. Li, Z. Hu, L. Pei, J. Wang, X. Liu, X. Zhao, Effects of ion-doping at different sites on multiferroic properties of BiFeO3 thin films. Appl. Phys. A 102, 713–717 (2011)

    Article  CAS  Google Scholar 

  24. Z. Quan, W. Liu, Hu. Hao, Xu. Sheng, B. Sebo, G. Fang, M. Li, X. Zhao, Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films. J. Appl. Phys. 104, 084106 (2008). https://doi.org/10.1063/1.3000478

    Article  CAS  Google Scholar 

  25. M. Arora, M. Kumar, Structural, magnetic and optical properties of Ce substituted BiFeO3 nanoparticles. Ceram. Int. 41(4), 5705–5712 (2015)

    Article  CAS  Google Scholar 

  26. E.M.M. Ibrahim, G. Farghal, M.M. Khalaf, H.M. Abd El-Lateef, Magnetic and DC electric properties of sol–gel-synthesized Ce-doped BiFeO3 nanoflake. Appl. Phys. A 123, 533 (2017)

    Article  CAS  Google Scholar 

  27. P.C. Sati, M. Kumar, M. Arora, M. Tomar, V. Gupta, Effect of Zr substitution on structural, magnetic, and optical properties of Bi0.9Dy0.1Fe1−xZrxO3 multiferroic ceramics prepared by rapid liquid phase sintering method. Ceram. Int. 43, 4904–4909 (2017)

    Article  CAS  Google Scholar 

  28. M. Kumar, M. Arora, S. Chauhan, S. Joshi, Raman spectroscopy probed spin-two phonon coupling and improved magnetic and optical properties in Dy and Zr substituted BiFeO3 nanoparticles. J. Alloys Compd. 692, 236–242 (2017)

    Article  CAS  Google Scholar 

  29. J. Rodríguez-Carvajal, Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr). Newsletter 26, 12–19 (2001)

    Google Scholar 

  30. A. Gholizadeh, N. Tajabor, Influence of N2- and Ar-ambient annealing on the physical properties of SnO2:Co transparent conducting films. Mater. Sci. Semicond. Process. 13, 162–166 (2010)

    Article  CAS  Google Scholar 

  31. L. Venkidu, M.V.G. Babu, P.E. Rubavathi, B. Bagyalakshmi, B. Sundarakannan, Structure, microstructure, magnetic and magnetodielectric investigations on BaTi(1-x-y)FexNbyO3 ceramics. Ceram. Int. 44, 8161–8165 (2018)

    Article  CAS  Google Scholar 

  32. Y. Wang, C.-W. Nan, Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 103, 114104 (2008)

    Article  CAS  Google Scholar 

  33. J. Li, X.Y. Guan, Structural and optical properties of Ce doped BiFeO3 nanoparticles via sol–gel method. Micro Nano Lett. 14(13), 1307–1311 (2019)

    Article  CAS  Google Scholar 

  34. J. Sharma, D. Basandrai, A.K. Srivastava, Ce Co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications. Chin. Phys. B 26(11), 116201 (2017)

    Article  CAS  Google Scholar 

  35. J.-P. Zhou, R.-J. Xiao, Y.-X. Zhang, Z. Shi, G.-Q. Zhu, Novel behaviors of single-crystalline BiFeO3 nanorods hydrothermally synthesized under magnetic field. J. Mater. Chem. C 3, 6924 (2015)

    Article  CAS  Google Scholar 

  36. Y.Q. Jia, Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 95, 184–187 (1991)

    Article  CAS  Google Scholar 

  37. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  38. A. Gholizadeh, A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. J. Am. Ceram. Soc. 100(8), 3577–3588 (2017)

    Article  CAS  Google Scholar 

  39. R. Naik, J.J. Nazarko, C.S. Flattery, U.D. Venkateswaran, V.M. Naik, M.S. Mohammed, G.W. Auner, J.V. Mantese, N.W. Schubring, A.L. Micheli, A.B. Catalan, Temperature dependence of the Raman spectra of polycrystalline Ba1-xSixTiO3. Phys. Rev. B 61, 11367 (2000)

    Article  CAS  Google Scholar 

  40. S. Chauhan, M. Kumar, P. Pal, Substitution driven structural and magnetic properties and evidence of spin phonon coupling in Sr-doped BiFeO3 nanoparticles. RSC Adv. 6, 68028–68040 (2016)

    Article  CAS  Google Scholar 

  41. S. Chaturvedi, R. Bag, V. Sathe, S. Kulkarni, S. Singh, Holmium induced enhanced functionality at room temperature and structural phase transition at high temperature in bismuth ferrite nanoparticles. J. Mater. Chem. C 4, 780–792 (2016)

    Article  CAS  Google Scholar 

  42. M.M. Shirolkar, J. Li, X. Dong, M. Li, H. Wang, Controlling the ferroelectric and resistive switching properties of a BiFeO3 thin film prepared using sub-5 nm dimension nanoparticles. Phys. Chem. Chem. Phys. 19, 26085 (2017)

    Article  CAS  Google Scholar 

  43. M.K. Singh, S. Ryu, H.M. Jang, Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys. Rev. B 72, 132101 (2005)

    Article  CAS  Google Scholar 

  44. A. Gholizadeh, The effects of A/B-site substitution on structural, redox and catalytic properties of lanthanum ferrite nanoparticles. J. Mater. Res. Technol. 8(1), 457–466 (2019)

    Article  CAS  Google Scholar 

  45. A. Gholizadeh, A. Malekzadeh, M. Ghiasi, Structural and magnetic features of La0.7Sr0.3Mn1−xCoxO3 nano-catalysts for ethane combustion and CO oxidation. Ceram. Int. 42(5), 5707–5717 (2016)

    Article  CAS  Google Scholar 

  46. A. Gholizadeh, H. Yousefi, A. Malekzadeh, F. Pourarian, Calcium and strontium substituted lanthanum manganite–cobaltite [La1-x(Ca, Sr)xMn0.5Co0.5O3] nano-catalysts for low temperature CO oxidation. Ceram. Int. 42(10), 12055–12063 (2016)

    Article  CAS  Google Scholar 

  47. W. Zhou, H. Deng, H. Cao, J. He, J. Liu, P. Yang, J. Chu, Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by a sol–gel technique. Mater. Lett. 144, 93–96 (2015)

    Article  CAS  Google Scholar 

  48. D. Kuang, P. Tang, X. Wu, S. Yang, X. Ding, Y. Zhang, Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films. J. Alloy. Compd. 671, 192–199 (2016)

    Article  CAS  Google Scholar 

  49. A. Gholizadeh, A comparative study of the physical properties of Cu–Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere. J. Magn. Magn. Mater. 452, 389–397 (2018)

    Article  CAS  Google Scholar 

  50. A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)

    Article  CAS  Google Scholar 

  51. H. Khedri, A. Gholizadeh, Experimental comparison of structural, magnetic and elastic properties of M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe Co, Ni, Mg) nanoparticles. Appl. Phys. A 125, 709 (2019)

    Article  CAS  Google Scholar 

  52. D. Wang et al., Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 41, 8768–8772 (2015)

    Article  CAS  Google Scholar 

  53. S. Godara, N. Sinha, B. Kumar, Study the influence of Nd and Co/Cr co-substitutions on structural, electrical and magnetic properties of BiFeO3 nanoparticles. Ceram. Int. 42(1), 1782–1790 (2016)

    Article  CAS  Google Scholar 

  54. T. Wang, T. Xu, S. Gao, S.-H. Song, Effect of Nd and Nb co-doping on the structural, magnetic and optical properties of multiferroic BiFeO3 nanoparticles prepared by sol-gel method. Ceram. Int. 43, 4489–4495 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Gholizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adineh, Z., Gholizadeh, A. Hydrothermal synthesis of Ce/Zr co-substituted BiFeO3: R3c-to-P4mm phase transition and enhanced room temperature ferromagnetism. J Mater Sci: Mater Electron 32, 26929–26943 (2021). https://doi.org/10.1007/s10854-021-07067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07067-y

Navigation