Skip to main content
Log in

Inferring the physical properties of La-substituted ZnO nanorods and nanoflowers for the photodegradation of Congo red azo dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The chemical bath deposition technique was employed to synthesize unsubstituted and different percentages of La-substituted ZnO-nanoscaled thin films on a glass substrate with nominal concentrations of 0.0%, 3%, and 7%. Microwave irradiation effects on the photocatalyst of La-substituted ZnO samples for photodegradation of Congo red dye were investigated. Crystallographic parameters of unsubstituted and La-substituted ZnO were scrutinized by XRD. It was verified that as-synthesized samples belong to the wurtzite structure. Chemical stretching of the as-prepared samples was detected using an FTIR spectrum which reflects that La substitutes in ZnO lattice. A peak of 1630 cm−1 is presently owing to the ZnO stretching and deformation. The band gap of unsubstituted and La-substituted ZnO was evaluated using a UV–Vis spectrometer, and it was substantiated that the energy band gap suppresses as La content enhances which states the existence of red shift. The electric property such as resistance of unsubstituted and La-substituted ZnO nanomaterial was intended by I–V characteristics. The optical property with surface defect study was elucidated by fluorescence spectroscopy. Visible light photosensitivity was intended by I–V characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. MAEAAA El-Remaily, AM Abu-Dief (2015) Tetrahedron 71: 2579. https://doi.org/10.1016/j.tet.2015.02.057

  2. MAE Aleem Ali El-Remaily, AM Abu-Dief, RM El-Khatib (2016) Appl Organometal Chem 30: 1022. https://doi.org/10.1002/aoc.3536

  3. W.S. Mohamed, A.M. Abu-Dief, J. Phys. Chem. Solids 116, 375 (2018). https://doi.org/10.1016/j.jpcs.2018.02.008

    Article  CAS  Google Scholar 

  4. W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Nanomaterials 9, 1602 (2019)

    Article  CAS  Google Scholar 

  5. W.S. Mohamed, A.M. Abu-Dief, Ceram. Int. 46, 16196 (2020). https://doi.org/10.1016/j.ceramint.2020.03.175

    Article  CAS  Google Scholar 

  6. L. Kang, H. An, J.Y. Park, M.H. Hong, S. Nahm, C.G. Lee, Appl. Surf. Sci. 475, 969 (2019). https://doi.org/10.1016/j.apsusc.2019.01.025

    Article  CAS  Google Scholar 

  7. S. Yang, L. Wang, Y. Yan et al., Sci. Rep. 9, 16863 (2019). https://doi.org/10.1038/s41598-019-53212-3

    Article  CAS  Google Scholar 

  8. A. Manikandan, E. Manikandan, B. Meenatchi et al., J. Alloy. Compd. 723, 1155 (2017). https://doi.org/10.1016/j.jallcom.2017.06.336

    Article  CAS  Google Scholar 

  9. N.D. Raskar, D.V. Dake, V.A. Mane, E. Stathatos, U. Deshpande, B. Dole, J. Mater. Sci.: Mater. Electron. 30, 10886 (2019). https://doi.org/10.1007/s10854-019-01433-7

    Article  CAS  Google Scholar 

  10. P. Pascariu, M. Homocianu, C. Cojocaru, P. Samoila, A. Airinei, M. Suchea, Appl. Surf. Sci. 476, 16 (2019). https://doi.org/10.1016/j.apsusc.2019.01.077

    Article  CAS  Google Scholar 

  11. L.T.T. Nguyen, L.T.H. Nguyen, A.T.T. Duong et al., Materials (Basel) 12, 1195 (2019). https://doi.org/10.3390/ma12081195

    Article  CAS  Google Scholar 

  12. M. Zafar, B. Kim, D.-H. Kim, Mater. Chem. Phys. 240, 122076 (2020). https://doi.org/10.1016/j.matchemphys.2019.122076

    Article  CAS  Google Scholar 

  13. U. Riaz, S.M. Ashraf, RSC Adv. 4, 47153 (2014). https://doi.org/10.1039/C4RA06698G

    Article  CAS  Google Scholar 

  14. J. Sun, G. Xia, W. Yang, Y. Hu, W. Shen, Water Sci. Technol. 82, 704 (2020). https://doi.org/10.2166/wst.2020.370

    Article  CAS  Google Scholar 

  15. S. Mishra, T.K. Sahu, P. Verma, P. Kumar, S.K. Samanta, ACS Omega 4, 10411 (2019). https://doi.org/10.1021/acsomega.9b00914

    Article  CAS  Google Scholar 

  16. Y. Mao, S. Yang, C. Xue et al., Royal Soc Open Sci 5, 180085 (2018). https://doi.org/10.1098/rsos.180085

    Article  CAS  Google Scholar 

  17. W.-H. Kuan, C.-Y. Chen, C.-Y. Hu, Y.-M. Tzou, Int. J. Photoenergy 2013, 916849 (2013). https://doi.org/10.1155/2013/916849

    Article  CAS  Google Scholar 

  18. H.A. Khawal, U.P. Gawai, K. Asokan, B.N. Dole, RSC Adv. 6, 49068 (2016). https://doi.org/10.1039/C6RA04803J

    Article  CAS  Google Scholar 

  19. V. Strano, R.G. Urso, M. Scuderi et al., J Phys Chem C 118, 28189 (2014). https://doi.org/10.1021/jp507496a

    Article  CAS  Google Scholar 

  20. H.A. Khawal, N.D. Raskar, B.N. Dole, AIP Conf. Proc. 1832, 080064 (2017). https://doi.org/10.1063/1.4980524

    Article  CAS  Google Scholar 

  21. MH Razali, NA Ismail, MFA Mohd Zulkafli, KAM Amin (2018) Mater Res Express 5: 035039. https://doi.org/10.1088/2053-1591/aab5f5

  22. L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, Bioorg. Chem. 69, 140 (2016). https://doi.org/10.1016/j.bioorg.2016.10.009

    Article  CAS  Google Scholar 

  23. H.A. Khawal, V.D. Mote, K. Asokan, B.N. Dole, J. Solid State Electrochem. 22, 1237 (2018). https://doi.org/10.1007/s10008-017-3833-7

    Article  CAS  Google Scholar 

  24. D.V. Dake, N.D. Raskar, V.A. Mane et al., Appl. Phys. A 126, 640 (2020). https://doi.org/10.1007/s00339-020-03669-1

    Article  CAS  Google Scholar 

  25. B.N. Dole, V.D. Mote, V.R. Huse et al., Curr. Appl. Phys. 11, 762 (2011). https://doi.org/10.1016/j.cap.2010.11.050

    Article  Google Scholar 

  26. H.A. Khawal, B.N. Dole, RSC Adv. 7, 34736 (2017). https://doi.org/10.1039/C7RA01809F

    Article  CAS  Google Scholar 

  27. N. Huse, D. Upadhye, R. Sharma, AIP Conf. Proc. 1728, 020410 (2016). https://doi.org/10.1063/1.4946461

    Article  Google Scholar 

  28. V.V. Kutwade, K.P. Gattu, A.S. Dive, M.E. Sonawane, D.A. Tonpe, R. Sharma, J. Mater. Sci.: Mater. Electron. 32, 6475 (2021). https://doi.org/10.1007/s10854-021-05364-0

    Article  CAS  Google Scholar 

  29. A Echresh, CO Chey, M Zargar Shoushtari, V Khranovskyy, O Nur, M Willander (2015) Journal of Alloys and Compounds 632: 165. https://doi.org/10.1016/j.jallcom.2015.01.155

  30. H. Chen, J. Ding, W. Guo, G. Chen, S. Ma, RSC Adv. 3, 12327 (2013). https://doi.org/10.1039/C3RA40750K

    Article  CAS  Google Scholar 

  31. R. Yousefi, H.R. Azimi, M.R. Mahmoudian, M. Cheraghizade, Adv. Powder Technol. 29, 78 (2018). https://doi.org/10.1016/j.apt.2017.10.014

    Article  CAS  Google Scholar 

  32. R Yousefi, J Beheshtian, SM Seyed-Talebi, HR Azimi, F Jamali-Sheini (2018) Chem Asian J 13: 194. https://doi.org/10.1002/asia.201701423

  33. N. Raskar, D. Dake, H. Khawal, U. Deshpande, K. Asokan, B. Dole, SN Applied Sciences 2, 1403 (2020). https://doi.org/10.1007/s42452-020-3053-0

    Article  CAS  Google Scholar 

  34. A.M. Abu-Dief, A.A. Essawy, A.K. Diab, W.S. Mohamed, J. Phys. Chem. Solids 148, 109666 (2021). https://doi.org/10.1016/j.jpcs.2020.109666

    Article  CAS  Google Scholar 

  35. M. Rostami, RSC Adv. 7, 43424 (2017). https://doi.org/10.1039/C7RA06767D

    Article  CAS  Google Scholar 

  36. P.V. Korake, R.S. Dhabbe, A.N. Kadam, Y.B. Gaikwad, K.M. Garadkar, J. Photochem. Photobiol. B 130, 11 (2014). https://doi.org/10.1016/j.jphotobiol.2013.10.012

    Article  CAS  Google Scholar 

  37. P. Pascariu, C. Cojocaru, N. Olaru et al., J. Environ. Manage. 239, 225 (2019). https://doi.org/10.1016/j.jenvman.2019.03.060

    Article  CAS  Google Scholar 

  38. S Anandan, A Vinu, KLP Sheeja Lovely, et al. (2007) J Mol Catal A Chem 266: 149. https://doi.org/10.1016/j.molcata.2006.11.008

  39. E. Kharatzadeh, S.R. Masharian, R. Yousefi, Mater. Res. Bull. 135, 111127 (2021). https://doi.org/10.1016/j.materresbull.2020.111127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. S.S. Shah for his scientific discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Dole.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dake, D.V., Sonpir, R.B., Mane, V.A. et al. Inferring the physical properties of La-substituted ZnO nanorods and nanoflowers for the photodegradation of Congo red azo dye. J Mater Sci: Mater Electron 33, 8880–8892 (2022). https://doi.org/10.1007/s10854-021-06969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06969-1

Navigation