Skip to main content
Log in

Nickle-ion-substituted ceria nanoparticles-based electrochemical sensor for sensitive detection of thiourea

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel-substituted ceria nanoparticles (CeO2:Ni NPs) were prepared by the co-precipitation process under environmental conditions. X-ray diffraction (XRD), field emission-transmission electron microscopy, UV/visible, X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy techniques were successfully used to investigate the crystallographic structure, phase purity, morphology, optical properties, chemical composition, and electrocatalytic properties of the as-prepared ceria NPs. XRD pattern shows the formation of single-phase, highly crystalline, and cubic phase nanostructure with an average of 10 nm crystalline size. As observed from TEM micrographs, particles were highly aggregated may be due to the synthesis in aqueous media. The electrochemical properties and sensing performance of the CeO2:Ni NPs pasted on glassy carbon electrode were measured against different thiourea concentrations. The fabricated electrode revealed excellent electrocatalytic activity against thiourea concentrations as well as characterization in comparison to the bare electrode. The electrode exhibited a linear detection range between 3.56 and 1000 µM, detection limit 3.56 µM, and sensitivity 2.52 µA mL µM−1 cm−2 with regression coefficient 0.995. The electrochemical stability, chemical kinetic, and reproducibility were also examined in the presence of thiourea in phosphate buffer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wang, Y.D. Li, Chem.—Eur. J 9, 5627 (2003). https://doi.org/10.1002/chem.200304785

    Article  CAS  Google Scholar 

  2. J.Y. Luo, M. Meng, J.S. Yao et al., Appl. Catal. B—Environ. 87, 92 (2009). https://doi.org/10.1016/j.apcatb.2008.08.017

    Article  CAS  Google Scholar 

  3. A.A. Ansari, J.P. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, Acta Metall. Sin.—Engl. Lett. 29, 265 (2016). https://doi.org/10.1007/s40195-016-0387-0

    Article  CAS  Google Scholar 

  4. H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Angew. Chem. 124, 12198 (2012)

    Article  Google Scholar 

  5. J. Zhang, J. Guo, W. Liu et al., Eur. J. Inorg. Chem. 2015, 969 (2015)

    Article  CAS  Google Scholar 

  6. A.A. Ansari, A. Kaushik, P.R. Solanki, B.D. Malhotra, Electrochem. Commun. 10, 1246 (2008). https://doi.org/10.1016/j.elecom.2008.06.003

    Article  CAS  Google Scholar 

  7. A.A. Ansari, P.R. Solanki, B.D. Malhotra, Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2953686

    Article  Google Scholar 

  8. P.R. Solanki, C. Dhand, A. Kaushik, A.A. Ansari, K.N. Sood, B.D. Malhotra, Sens. Actuators B-Chem. 141, 551 (2009). https://doi.org/10.1016/j.snb.2009.05.034

    Article  CAS  Google Scholar 

  9. A. Kaushik, P.R. Solanki, A.A. Ansari, S. Ahmad, B.D. Malhotra, Nanotechnology (2009). https://doi.org/10.1088/0957-4484/20/5/055105

    Article  Google Scholar 

  10. S. Patil, S. Seal, Y. Guo, A. Schulte, J. Norwood, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.220795

    Article  Google Scholar 

  11. C.K. Kim, T. Kim, I.Y. Choi et al., Angew. Chem. Int. Ed Engl. 51, 11039 (2012). https://doi.org/10.1002/anie.201203780

    Article  CAS  Google Scholar 

  12. R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, B.D. Malhotra, Anal. Chim. Acta 616, 207 (2008). https://doi.org/10.1016/j.aca.2008.04.010

    Article  CAS  Google Scholar 

  13. A. Ali, A.A. Ansari, A. Kaushik et al., Mater. Lett. 63, 2473 (2009). https://doi.org/10.1016/j.matlet.2009.08.038

    Article  CAS  Google Scholar 

  14. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, J. Chin. Chem. Soc. 62, 925 (2015). https://doi.org/10.1002/jccs.201500195

    Article  CAS  Google Scholar 

  15. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, J. Electroceram. 36, 150 (2016). https://doi.org/10.1007/s10832-016-0018-1

    Article  CAS  Google Scholar 

  16. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, Phase Transit. 89, 261 (2016). https://doi.org/10.1080/01411594.2015.1116532

    Article  CAS  Google Scholar 

  17. X. Zhang, J. Wei, H. Yang et al., Eur. J. Inorg. Chem. 2013, 4443 (2013). https://doi.org/10.1002/ejic.201300370

    Article  CAS  Google Scholar 

  18. Q. Tan, C. Du, Y. Sun, L. Du, G. Yin, Y. Gao, J. Power Sources 263, 310 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.062

    Article  CAS  Google Scholar 

  19. C.S.S. Pavan Kumar, R. Pandeeswari, B.G. Jeyaprakash, J. Alloys Compd. 602, 180 (2014). https://doi.org/10.1016/j.jallcom.2014.02.143

    Article  CAS  Google Scholar 

  20. A.A. Ansari, P.R. Solanki, B.D. Malhotra, J. Biotechnol. 142, 179 (2009). https://doi.org/10.1016/j.jbiotec.2009.04.005

    Article  CAS  Google Scholar 

  21. S. Maensiri, C. Masingboon, P. Laokul et al., Cryst. Growth Des. 7, 950 (2007). https://doi.org/10.1021/cg0608864

    Article  CAS  Google Scholar 

  22. M. Leoni, R. Di Maggio, S. Polizzi, P. Scardi, J. Am. Ceram. Soc. 87, 1133 (2004). https://doi.org/10.1111/j.1551-2916.2004.01133.x

    Article  CAS  Google Scholar 

  23. Z. Wang, Z. Quan, J. Lin, Inorg. Chem. 46, 5237 (2007). https://doi.org/10.1021/ic0701256

    Article  CAS  Google Scholar 

  24. J. Wang, Z. Li, S. Zhang et al., Sens. Actuators, B Chem. 255, 862 (2018). https://doi.org/10.1016/j.snb.2017.08.149

    Article  CAS  Google Scholar 

  25. A.A. Ansari, M. Alam, M.A. Ali, Colloids Surf. A Physicochem. Eng. Asp. 613, 126116 (2021). https://doi.org/10.1016/j.colsurfa.2020.126116

    Article  CAS  Google Scholar 

  26. Z.L. Wang, G.R. Li, Y.N. Ou, Z.P. Feng, D.L. Qu, Y.X. Tong, J. Phys. Chem. C 115, 351 (2011). https://doi.org/10.1021/jp1070924

    Article  CAS  Google Scholar 

  27. A.A. Ansari, A. Kaushik, J. Semicond. 31, 033001 (2010). https://doi.org/10.1088/1674-4926/31/3/033001

    Article  CAS  Google Scholar 

  28. A.A. Ansari, S.P. Singh, B.D. Malhotra, J. Alloy. Compd. 509, 262 (2011). https://doi.org/10.1016/j.jallcom.2010.07.009

    Article  CAS  Google Scholar 

  29. D. Channei, B. Inceesungvorn, N. Wetchakun et al., Ceram. Int. 39, 3129 (2013). https://doi.org/10.1016/j.ceramint.2012.09.093

    Article  CAS  Google Scholar 

  30. A.A. Ansari, J. Semicond. 31, 053001 (2010). https://doi.org/10.1088/1674-4926/31/5/053001

    Article  CAS  Google Scholar 

  31. Y.-W. Zhang, R. Si, C.-S. Liao, C.-H. Yan, C.-X. Xiao, Y. Kou, J. Phys. Chem. B 107, 10159 (2003). https://doi.org/10.1021/jp034981o

    Article  CAS  Google Scholar 

  32. A.A. Ansari, J.P. Labis, M. Alam, S.M. Ramay, N. Ahmed, A. Mahmood, Anal. Lett. 50, 1360 (2017). https://doi.org/10.1080/00032719.2016.1218499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, King Saud University, Riyadh, for funding this work through Research Group No. RG-1439-089.

Author information

Authors and Affiliations

Authors

Contributions

AAA: conceptualization, methodology, investigation, resources, data curation, writing—original draft, writing—review & editing, supervision, project administration, and funding acquisition. MA: methodology, formal analysis, and data curation.

Corresponding author

Correspondence to Anees A. Ansari.

Ethics declarations

Conflict of interest

The authors do not have any competing or financial interest in the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Alam, M. Nickle-ion-substituted ceria nanoparticles-based electrochemical sensor for sensitive detection of thiourea. J Mater Sci: Mater Electron 32, 23266–23274 (2021). https://doi.org/10.1007/s10854-021-06811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06811-8

Navigation