Skip to main content
Log in

Structure evolutions with enhanced dielectric permittivity and ferroelectric properties of Ba(1−x)(La, Li)xTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polycrystalline Ba(1−x)(La0.50Li0.50)xTiO3 (0 ≤ x ≤ 0.12) ceramics are fabricated via the solid-state reaction technique to analyze their structure, excellent dielectric permittivity, and ferro/piezoelectric characteristics systematically. Powder x-ray diffraction has revealed the pure polycrystalline tetragonal symmetry for x ≤ 0.09 compositions. Rietveld refinement analysis has revealed the structure having a reducing tetragonality with increasing composition. A dense and compact ceramic with many grains having different size distributions has been perceived. The substitution of Li and La ions in BaTiO3 unit cell lattice has increased the ambient temperature dielectric permittivity with reduced loss tangent from ~ 2000, ~ 0.019 (for x = 0) to ~ 5166, ~ 0.002 (for x = 0.09) at 1 MHz frequency. In addition, a high bipolar strain ~ 0.24% for x = 0.03 is obtained. The increase of dielectric permittivity with reduced loss tangent might be applicable for capacitor applications at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017)

    Article  CAS  Google Scholar 

  2. R.E. Newnham, L.E. Cross, Ferroelectricity: the foundation of a field from form to function. MRS Bull. 30, 845–848 (2011)

    Article  Google Scholar 

  3. J. Sui, H. Fan, H. Peng, J. Ma, A.K. Yadav, W. Chao, M. Zhang, G. Dong, Enhanced energy-storage performance and temperature-stable dielectric properties of (1–x)[(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3-xK0.5Na0.5NbO3 lead-free ceramics. Ceram. Int. 45, 20427–20434 (2019)

    Article  CAS  Google Scholar 

  4. D. Hennings, Barium titanate based ceramic materials for dielectric use. Int. J. Hig Technol. Ceram. 3, 91–111 (1987)

    Article  CAS  Google Scholar 

  5. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Effects of annealing temperature on the structural, morphology, optical properties and resistivity of sputtered CCTO thin film. J. Mater. Sci. - Mater. Electron. 28, 12458–12466 (2017)

    Article  CAS  Google Scholar 

  6. M. Ahmadipour, W.K. Cheah, M.F. Ain, K.V. Rao, Z.A. Ahmad, Effects of deposition temperatures and substrates on microstructure and optical properties of sputtered CCTO thin film. Mater. Lett. 210, 4–7 (2018)

    Article  CAS  Google Scholar 

  7. C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J. Rare Earths 28, 43–47 (2010)

    Article  CAS  Google Scholar 

  8. M. Ahmadipour, M. Arjmand, M.F. Ain, Z.A. Ahmad, S.-Y. Pung, Effect of WO3 loading on structural, electrical and dielectric properties of CaCu3Ti4O12 ceramic composites. J. Mater. Sci. - Mater. Electron. 30, 6806–6810 (2019)

    Article  CAS  Google Scholar 

  9. M. Ahmadipour, M.F. Ain, S. Goutham, Z.A. Ahmad, Effects of deposition time on properties of CaCu3Ti4O12 thin film deposited on ITO substrate by RF magnetron sputtering at ambient temperature. Ceram. Int. 44, 18817–18820 (2018)

    Article  CAS  Google Scholar 

  10. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-Micro Lett. 8, 291–311 (2016)

    Article  CAS  Google Scholar 

  11. M.J. Bin Abu, R.A. Zaman, M.F. Ab Rahman, M. Ahmadipour, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, Dielectric properties of CaCu3Ti4O12/Al2O3 composites. Mater. Sci. Forum 888, 12–16 (2017)

    Article  Google Scholar 

  12. M. Ahmadipour, S.N. Ayub, M.F. Ain, Z.A. Ahmad, Structural, surface morphology and optical properties of sputter-coated CaCu3Ti4O12 thin film: influence of RF magnetron sputtering power. Mater. Sci. Semicond. Process. 66, 157–161 (2017)

    Article  CAS  Google Scholar 

  13. M.F. Ab Rahman, Z.A. Ahmad, J.J. Mohamed, M.F. Ain, M. Ahmadipour, N.A. Rejab, Effect of glass addition on the phase formation, microstructures evolution and dielectric properties of CCTO ceramics for energy storage capacitor. J. Phys. Conf. Ser. 1082, 012039 (2018)

    Article  CAS  Google Scholar 

  14. M. Ahmadipour, M. Arjmand, M.F. Ain, Z.A. Ahmad, S.-Y. Pung, Effect of Ar:N2 flow rate on morphology, optical and electrical properties of CCTO thin films deposited by RF magnetron sputtering. Ceram. Int. 45, 15077–15081 (2019)

    Article  CAS  Google Scholar 

  15. N. Kumar, A. Ionin, T. Ansell, S. Kwon, W. Hackenberger, D. Cann, Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl. Phys. Lett. 106, 252901 (2015)

    Article  CAS  Google Scholar 

  16. Y. Lin, L. Jiang, R. Zhao, C.-W. Nan, High-permittivity core/shell stuctured NiO-based ceramics and their dielectric response mechanism. Phys. Rev. B 72, 014103 (2005)

    Article  CAS  Google Scholar 

  17. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013)

    Article  CAS  Google Scholar 

  18. M.A. Mohiddon, A. Kumar, K.L. Yadav, Effect of Nd doping on structural, dielectric and thermodynamic properties of PZT (65/35) ceramic. Physica B Condens Matter. 395, 1–9 (2007)

    Article  CAS  Google Scholar 

  19. J. Chen, X. Chen, F. He, Y. Wang, H. Zhou, L. Fang, Thermally stable BaTiO3-Bi(Mg0.75W0.25)O3 solid solutions: sintering characteristics, phase evolution, Raman spectra, and dielectric properties. J. Electron. Mater. 43, 1112–1118 (2014)

    Article  CAS  Google Scholar 

  20. W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer, C.M. Gilmore, D.B. Chrisey, The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films. Appl. Phys. Lett. 74, 1033–1035 (1999)

    Article  CAS  Google Scholar 

  21. K. Kinoshita, A. Yamaji, Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47, 371–373 (1976)

    Article  CAS  Google Scholar 

  22. J. Wang, S. Jiang, D. Jiang, J. Tian, Y. Li, Y. Wang, Microstructural design of BaTiO3-based ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int. 38, 5853–5857 (2012)

    Article  CAS  Google Scholar 

  23. E. Aksel, J.S. Forrester, H.M. Foronda, R. Dittmer, D. Damjanovic, J.L. Jones, Structure and properties of La-modified Na0.5Bi0.5TiO3 at ambient and elevated temperatures. J. Appl. Phys. 112, 054111 (2012)

    Article  CAS  Google Scholar 

  24. A.K. Yadav, A. Verma, S. Kumar, S. Riyajuddin, K. Ghosh, S. Biring, S. Sen, Structure, dielectric, and optical properties of PbTi(1–x)(V0.50Fe0.50)xO3 perovskite ceramics. Appl. Phys. A 125, 418 (2019)

    Article  CAS  Google Scholar 

  25. M.S. Alkathy, K.K. Bokinala, K.C. James Raju, Effect of Li and Bi co-substituted on structural and physical properties of BaTiO3 ceramics. J. Mater. Sci. - Mater. Electron. 27, 3175–3181 (2016)

    Article  CAS  Google Scholar 

  26. Q. Li, C. Wang, A.K. Yadav, H. Fan, Large electrostrictive effect and energy storage density in MnCO3 modified Na0.325Bi0.395Sr0.245–0.035TiO3 lead-free ceramics. Ceram. Int. 46, 3374–3381 (2020)

    Article  CAS  Google Scholar 

  27. M.-J. Wang, H. Yang, Q.-L. Zhang, Z.-S. Lin, Z.-S. Zhang, D. Yu, L. Hu, Microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application. Mater. Res. Bull. 60, 485–491 (2014)

    Article  CAS  Google Scholar 

  28. A. Ianculescu, Z.V. Mocanu, L.P. Curecheriu, L. Mitoseriu, L. Padurariu, R. Truşcă, Dielectric and tunability properties of La-doped BaTiO3 ceramics. J. Alloys Compd. 509, 10040–10049 (2011)

    Article  CAS  Google Scholar 

  29. Z.C. Li, H. Zhang, X. Zou, B. Bergman, Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase. Mater. Sci. Eng. B 116, 34–39 (2005)

    Article  CAS  Google Scholar 

  30. Q. Lou, X. Shi, X. Ruan, J. Zeng, Z. Man, L. Zheng, C.H. Park, G. Li, Ferroelectric properties of Li-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 101, 3597–3604 (2018)

    Article  CAS  Google Scholar 

  31. M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, Characterization of A-site deficient samarium doped barium titanate. Physica B Condens Matter. 411, 26–34 (2013)

    Article  CAS  Google Scholar 

  32. Y. Wang, K. Miao, W. Wang, Y. Qin, Fabrication of lanthanum doped BaTiO3 fine-grained ceramics with a high dielectric constant and temperature-stable dielectric properties using hydro-phase method at atmospheric pressure. J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Article  CAS  Google Scholar 

  33. J. Carvajal, FULLPROF: a program for rietveld refinement and pattern matching analysis, abstracts of the satellite meeting on powder diffraction of the XV Congress of the IUCr. https://www.bibsonomy.org/bibtex/f3e4945ad804f38471c6ad3a513f1e76 (1990)

  34. R. Moussi, A. Bougoffa, A. Trabelsi, E. Dhahri, M.P.F. Graça, M.A. Valente, R. Barille, Effect of Sr-substitution on structure, dielectric relaxation and conduction phenomenon of BaTiO3 perovskite material. J. Mater. Sci. - Mater. Electron. 32, 11453–11466 (2021)

    Article  CAS  Google Scholar 

  35. Z. Yu, Y. Liu, M. Shen, H. Qian, F. Li, Y. Lyu, Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 43, 7653–7659 (2017)

    Article  CAS  Google Scholar 

  36. P. Xue, Y. Hu, W. Xia, H. Wu, X. Zhu, Molten-salt synthesis of BaTiO3 powders and their atomic-scale structural characterization. J. Alloys Compd. 695, 2870–2877 (2017)

    Article  CAS  Google Scholar 

  37. X. Zhu, Q. Hang, Z. Tang, Z. Xing, Y. Song, J. Zhu, Z. Liu, TEM characterization and Raman spectra of hydrothermal BaTiO3 nanoparticles. Integr. Ferroelectr. 127, 178–183 (2011)

    Article  CAS  Google Scholar 

  38. V.K. Veerapandiyan, S. Khosravi, H.G. Canu, A. Feteira, V. Buscaglia, K. Reichmann, M. Deluca, B-site vacancy induced Raman scattering in BaTiO3-based ferroelectric ceramics. J. Eur. Ceram. Soc. 40, 4684–4688 (2020)

    Article  CAS  Google Scholar 

  39. J. Chen, P. Hu, X. Sun, C. Sun, X. Xing, High spontaneous polarization in PbTiO3–BiMeO3 systems with enhanced tetragonality. Appl. Phys. Lett. 91, 171907 (2007)

    Article  CAS  Google Scholar 

  40. K.C. Verma, V. Gupta, J. Kaur, R.K. Kotnala, Raman spectra, photoluminescence, magnetism and magnetoelectric coupling in pure and Fe doped BaTiO3 nanostructures. J. Alloys Compd. 578, 5–11 (2013)

    Article  CAS  Google Scholar 

  41. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  CAS  Google Scholar 

  42. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)

    Article  CAS  Google Scholar 

  43. A.K. Yadav, A. Verma, S. Kumar, V. Srihari, A.K. Sinha, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1–x)LaxTi(1–x)AlxO3 ceramics. J. Appl. Phys. 123, 124102 (2018)

    Article  CAS  Google Scholar 

  44. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996)

    Article  CAS  Google Scholar 

  45. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A 5, 554–563 (2017)

    Article  CAS  Google Scholar 

  46. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S. Biring, S. Sen, Enhanced energy storage properties in A-site substituted Na0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 792, 95–107 (2019)

    Article  CAS  Google Scholar 

  47. A.K. Yadav, A.S. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and ferroelectric properties of perovskite Pb(1–x)(K0.5Sm0.5)xTiO3 ceramics. RSC Adv. 7, 39434–39442 (2017)

    Article  CAS  Google Scholar 

  48. G. Chen, X. Peng, C. Fu, W. Cai, R. Gao, P. Fan, X. Zhang, X. Yi, C. Ji, H. Yang, H. Yong, Microstructure, dielectric and ferroelectric properties of (1–x) BaTiO3–xBiYbO3 ceramics fabricated by conventional and microwave sintering methods. J. Mater. Sci. - Mater. Electron. 29, 20017–20032 (2018)

    Article  CAS  Google Scholar 

  49. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Article  CAS  Google Scholar 

  50. P. Ren, Z. Liu, Q. Wang, B. Peng, S. Ke, H. Fan, G. Zhao, Large nonlinear dielectric behavior in BaTi1−xSnxO3. Sci. Rep. 7, 6693 (2017)

    Article  CAS  Google Scholar 

  51. A.K. Yadav, A.S. Kumar, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and dielectric properties of Pb(1–x)(Na0.5Sm0.5)xTiO3 ceramics. J. Mater. Sci. - Mater. Electron. 28, 10730–10738 (2017)

    Article  CAS  Google Scholar 

  52. J.F. Scott, Ferroelectrics go bananas. J. Phys. Condens. Matter. 20, 021001 (2008)

    Article  CAS  Google Scholar 

  53. J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, L.Q. Chen, Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles. J. Appl. Phys. 108, 034107 (2010)

    Article  CAS  Google Scholar 

  54. X. Liu, X. Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574–578 (2016)

    Article  CAS  Google Scholar 

  55. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  56. Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, G. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017)

    Article  CAS  Google Scholar 

  57. S. Kumar, K.B.R. Varma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. J. Phys. D: Appl. Phys. 42, 075405 (2009)

    Article  CAS  Google Scholar 

  58. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, S. Sen, Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO3–0.06BaTiO3 ceramics. J. Appl. Phys. 123, 224101 (2018)

    Article  CAS  Google Scholar 

  59. Y. Zhao, J. Xu, L. Yang, C. Zhou, X. Lu, C. Yuan, Q. Li, G. Chen, H. Wang, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion. J. Alloys Compd. 666, 209–216 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Key Research and Development Project (2020YFC1521900 and 2020YFC1521904), the National Nature Science Foundation (51902259), the 111 Program (B08040) of MOE, the SKLSP Project (2019-TZ-04), and the Open-end Fund of International Joint Research Laboratory of Henan Province for Underground Space Development and Disaster Prevention, Henan Polytechnic University, China. We would also like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM, TEM, AFM, Raman, and XRD test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Fan, H., Yan, B. et al. Structure evolutions with enhanced dielectric permittivity and ferroelectric properties of Ba(1−x)(La, Li)xTiO3 ceramics. J Mater Sci: Mater Electron 32, 23103–23115 (2021). https://doi.org/10.1007/s10854-021-06793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06793-7

Navigation