Skip to main content
Log in

Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A systematic study of structural, thermal, linear, and non-linear optical properties on 60TeO2–20ZnO–(16 − x)BaCO3–4BaF2–xTm2O3 (x = 0.25 to 2 mol%) glasses synthesized by melt-quenching technique is reported. Thermal stability of the samples was found to be around 100 °C, while their energy bandgap values varied between 3.08 and 3.57 eV. Measured properties showed a dominant effect of thulium ions in modifying the properties of the glassy matrix. Structural studies using Raman spectroscopy showed the presence of non-bridging oxygen (NBO) dominated by the matrix effect and also aided by the rare earth dopants, while the presence of hydroxyl impurities was elucidated from infrared spectroscopy. Optical absorption spectra showed characteristic thulium bands and the increment in spectroscopic quality factor calculated from measured absorption data indicating the lasing capability of the material. Luminescence spectra yielded two strong 3H4 → 3F4 and 3F4 → 3H6 emission transitions in the infrared region around 1460 nm and 1863 nm for all the samples, intensities of which were affected by increasing rare earth concentrations. Open aperture Z-Scan measurements indicated a reverse saturable absorption behavior for all the samples owing to two-photon absorption. Formation of more NBO led to the reduction of optical limiting threshold values from 3.91 × 1012 to 2.38 × 1012 W/m2 with thulium doping which indicated that this glass can be tuned to act as mid-infrared source as well as excellent optical limiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data have been included in the manuscript.

References

  1. D. Zhou, D. Jin, Q. Ni, X. Song, X. Bai, K. Han, Fabrications of double cladding Ho3+/Tm3+ co doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in 2 micron laser. J. Am. Cer. Soc. 102, 4748 (2019)

    Article  CAS  Google Scholar 

  2. Y. Chu, Y. Yang, Y. Liu, S. Wang, C. Shi, D. Zhang, H. Li, J. Peng, N. Dai, J. Li, L. Yang, 1.8 micron fluorescence characteristics of Tm3+ doped silica glasses and fiber prepared by the glass phase separation technology. J. Non-Cryst. Sol. 529, 119704 (2020)

    Article  CAS  Google Scholar 

  3. A. Kaur, A. Khanna, M. Gonzalez-Barriuso, Fernando Gonzalez, Thermal and light emission properties of rare earth (Eu3+, Dy3+ and Er3+), alkali (Li+, Na+ and K+) and Al3+ doped barium tellurite and boro-tellurite glasses. J. Mater. Sci. Mater. Electron. 32, 17266 (2021)

    Article  CAS  Google Scholar 

  4. L.M. Marcondes, L. Rodrigues, C.R. da Cunha, R.R. Goncalves, A.S.S. de Carmargo, F.C. Cassanjes, G.Y. Poirier, Rare earth ion doped niobium germanate glasses and glass-ceramics for optical device applications. J. Lumin. 213, 224 (2019)

    Article  CAS  Google Scholar 

  5. K. Annapoorani, N. Suriyamurthy, T.R. Ravindra, K. Marimuthu, Influence of Er3+ ion concentration on spectroscopic properties and luminescence behaviour in Er3+ doped strontium telluroborate glasses. J. Lumin. 171, 19 (2016)

    Article  CAS  Google Scholar 

  6. N. Elkhoshkhany, S. Marzouk, M. El-Sherbiny, S. Yousri, M.S. Alqahtani, H. Algarni, M. Reben, El Sayed Yousef, Enhanced thermal stability and optical and structural properties of Tm3+ ions in doped tellurite glasses for photonic use. Res. Phys 14, 104202 (2021)

    Google Scholar 

  7. Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, S. Xu, Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics. J. Lumin. 211, 418 (2019)

    Article  CAS  Google Scholar 

  8. T. Okura, Y. Nojima, K. Kawada, Y. Kojima, K. Ymashita, Photoluminescence properties of rare-earth ion-doped Na5YSi4O12-based glass ceramics. Cer. Inter. 47, 1940 (2021)

    Article  CAS  Google Scholar 

  9. B. Walsh, Comparison of Tm:ZBLAN and Tm:silica fiber lasers: spectroscopy and tunable pulsed laser operation around 1.9 µm. Appl. Phys. B 78, 325 (2004)

    Article  CAS  Google Scholar 

  10. B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, W. Sibbett, Tellurite glass lasers operating close to 2 µm. Las. Phys. Lett. 7, 177 (2010)

    Article  CAS  Google Scholar 

  11. X. Song, K. Han, D. Zhou, P. Xu, X. Xue, P. Zhang, 2 μm emission properties and energy transfer processes in Tm3+ doped Bi2O3-GeO2-Na2O glass laser material. J. Lumin. 224, 117314 (2020)

    Article  CAS  Google Scholar 

  12. Ch. Basavapoornima, T. Maheswari, C.J. Deviprasad, C.R. Kesavulu, T. Troster, C.K. Jayasankar, Thermal, structural, mechanical and 1.8 μm luminescence properties of the thulium doped Pb-K-Al-Na glasses for optical fiber amplifiers. J. Non-Cryst. Sol. 530, 119773 (2020)

    Article  CAS  Google Scholar 

  13. B. So, J. She, Y. Ding, J. Miyake, T. Atsumi, K. Tanaka, L. Wondraczek, Magnetic properties and photoluminescence of thulium-doped calcium aluminosilicate glasses. Opt. Mat. Exp. 9, 4348 (2019)

    Article  CAS  Google Scholar 

  14. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, Z. Yang, Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser. Sci. Rep. 6, 1 (2016)

    CAS  Google Scholar 

  15. L. Liu, F. Chen, J. Cui, X. Xiao, Y. Xi, C. Hao, X. Cui, H. Guo, The mutual influence between rare earth element doping and femtosecond laser-induced effects in Ga-As-Sb-S chalcogenide glass. Cer. Inter. 47, 6388 (2021)

    Article  CAS  Google Scholar 

  16. F. Qi, F. Huang, R. Lei, Y. Tian, L. Zhang, J. Zhang, S. Xu, Emission properties of 1.8 and 2.3 μm in Tm3+-doped fluoride glass. Glass Phys. Chem. 43, 340 (2017)

    Article  CAS  Google Scholar 

  17. P. Vani, G. Vinitha, M.I. Sayyed, B.O. Elbashir, N. Manikandan, Investigation on structural, optical, thermal and gamma photon shielding properties of zinc and barium doped fluorotellurite glasses. J. Non-Cryst. Sol. 511, 194 (2019)

    Article  CAS  Google Scholar 

  18. V. Tomar, R. Pandey, R. Singh, Influence of quenching rate and quenching media on formation of TeO2 glasses. J. Mater. Sci. Mater. Electron. 32, 17726 (2021)

    Article  CAS  Google Scholar 

  19. K.A. Naseer, S. Arunkumar, K. Marimuthu, The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth barium telluroborate glasses for display devices and 1.53µm amplification. J. Non-Cryst. Sol. 520, 119463 (2019)

    Article  CAS  Google Scholar 

  20. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, T. Cardinal, Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. Opt. Lett. 28, 1126 (2003)

    Article  CAS  Google Scholar 

  21. Y. Zhang, L. Xia, C. Li, J. Ding, J. Li, Y. Zhou, Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Opt. Las. Tech. 138, 106832 (2021)

    Article  CAS  Google Scholar 

  22. P. Suthanthirakumar, S. Arunkumar, K. Marimuthu, Investigations on the spectroscopic properties and local structure of Eu3+ ions in zinc telluro-fluoroborate glasses for red laser applications. J. Alloys Cpds. 760, 42 (2018)

    Article  CAS  Google Scholar 

  23. J. Yuan, P. Xioa, Compositional effects of Na2O, GeO2, and Bi2O3 on 1.8 µm spectroscopic properties of Tm3+ doped zinc tellurite glasses. J. Lumin. 196, 281 (2018)

    Article  CAS  Google Scholar 

  24. R. Sharma, S. Kaur, N. Deopa, R. Rani, M. Venkateswaralu, A.S. Rao, Spectroscopic properties of deep red emitting Tm3+ doped ZnPbWTe glasses for optoelectronic and laser applications. J. Non-Cryst. Sol. 516, 82 (2019)

    Article  CAS  Google Scholar 

  25. M. Venkateswarlu, S. Mahamuda, K. Swapna, A. Srinivasa Rao, A. Mohan Babu, S. Shakya, D. Haranath, G. Vijaya Prakash, Luminescence spectral studies of Tm3+ ions doped Lead Tungsten Tellurite glasses for visible Red and NIR applications. J. Lumin. 175, 225 (2016)

    Article  CAS  Google Scholar 

  26. J. Yuan, W. Wang, Y. Ye, T. Deng, D. Qu, J. Cheng, S. Yuan, P. Xiao, Effect of BaF2 variation on spectroscopic properties of Tm3+ doped gallium tellurite glasses for efficient 2 µm laser. Fron. Chem. 8, 628273 (2021)

    Article  CAS  Google Scholar 

  27. M. Kochanowicz, J. Zmojda, P. Miluski, A. Baranowska, M. Leich, A. Schwuchow, M. Jäger, M. Kuwik, J. Pisarska, W.A. Pisarski, D. Dorosz, Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm. Opt. Mat. Exp. 9, 1450 (2019)

    Article  CAS  Google Scholar 

  28. D. Wang, T. Zheng, J. Ly, Enhanced mid-infrared emission in Er3+/Tm3+ co-doped tungsten-tellurite glasses. Infra. Phys. Tech. 102, 102986 (2019)

    Article  CAS  Google Scholar 

  29. N. Manikandan, A. Ryasnyanskiy, J. Toulouse, Thermal and optical properties of TeO2–ZnO–BaO glasses. J. Non-Cryst. Sol. 358, 947 (2012)

    Article  CAS  Google Scholar 

  30. K. Aishwarya, G. Vinitha, S. Varma, S. Asokan, N. Manikandan, Synthesis and characterization of barium fluoride substituted zinc tellurite glasses. Phys. B: Cond. Matt. 526, 84 (2017)

    Article  CAS  Google Scholar 

  31. P. Vani, G. Vinitha, M.I. Sayyed, M.M. AlShammari, N. Manikandan, Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses. Nucl. Engg. Tech. (2021). https://doi.org/10.1016/j.net.2021.06.009

    Article  Google Scholar 

  32. G. Lakshminarayana, M.I. Sayyed, S.O. Baki, A. Lira, M.G. Dong, K.M. Kaky, I.V. Kityk, M.A. Mahdi, Optical absorption and gamma-radiation-shielding parameter studies of Tm3+-doped multicomponent borosilicate glasses. Appl. Phys. A 124, 378 (2018)

    Article  CAS  Google Scholar 

  33. Y. Al-Hadeethi, M. Ahmed Saleh, H. Al-Heniti, M.I. Sayyed, Y.S. Rammah, Rare earth co-doped telurite glass ceramics: potential use in optical and radiation shielding applications. Cer. Inter. 46, 19198 (2020)

    Article  CAS  Google Scholar 

  34. R. Mondal, D. Biswas, A.S. Das, R.K.N. Ningthemcha, D. Deb, S. Bhattacharya, S. Kabi, Influence of samarium content on structural, thermal, linear and non-linear optical properties of ZnO–TeO2–P2O5 glasses. Mat. Chem. Phys. 255, 123561 (2020)

    Article  CAS  Google Scholar 

  35. R. Miedzinski, I. Fuks-Janczarek, L.R.P. Kassab, F.A. Bomfim, Second and third-order nonlinear optical properties of Er3+/Yb3+ doped PbO−GeO2−Ga2O3 glasses with Au nanoparticles. Mater. Res. Bull. 95, 339 (2017)

    Article  CAS  Google Scholar 

  36. L.R.P. Kassab, M.J.V. Bell, Rare-earth-doped germanate and tellurite glasses: Laser, waveguide, and ultrafast device applications, in Lanthanide-Based Multifunctional Materials. (Elsevier, Amsterdam, 2018), pp. 263–289

    Chapter  Google Scholar 

  37. J. Cimek, N. Liaroa, S. Couris, R. Stephien, M. Klimczak, R. Buczynski, Experimental investigations of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers. Opt. Mat. Exp. 7(10), 3471 (2017)

    Article  CAS  Google Scholar 

  38. L. Moreira, R.F. Falci, H. Darabian, V. Anjos, M.J.V. Bell, L.R.P. Kasab, C.D.S. Bordon, J.L. Doualan, P. Camy, R. Moncorge, The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy. Opt. Mat. 79, 397 (2018)

    Article  CAS  Google Scholar 

  39. S. Singla, O.P. Pandey, G. Sharma, Z-scan study of nonlinear absorption in gold doped borosilicate glass: effect of Dy3+. J. Non-Cryst. Sol. 521, 119481 (2019)

    Article  CAS  Google Scholar 

  40. M. Liu, J. Zhong, X. Ma, Y. Huang, W. Xiang, Sodium borosilicate glass doped with Ni nanoparticles: structure, formation mechanism and nonlinear optical properties. J. Non-Cryst. Sol. 522, 119560 (2019)

    Article  CAS  Google Scholar 

  41. M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, R. El-Mallawany, Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Mat. Chem. Phys. 236, 121812 (2019)

    Article  CAS  Google Scholar 

  42. M.S. Sajna, S. Perumbilavil, V.P. Prakashan, M.S. Sanu, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Enhanced resonant nonlinear absorption and optical limiting in Er3+ ions doped multicomponent tellurite glasses. Mat. Res. Bull. 104, 227 (2018)

    Article  CAS  Google Scholar 

  43. P. Ramesh, V. Hegde, K. Keshavamurthy, A.G. Pramod, G. Jagannath, D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, K.S. Harisha, S. Khan, K. Annapurna, S.V. Rao, M.K. Kokila, Influence of gamma irradiation on photoluminescence and nonlinear optical properties of Eu3+ activated heavy metal borate glasses. Opt. Mat. 116, 111102 (2021)

    Article  CAS  Google Scholar 

  44. A.S. Hassanien, I. Sharma, A.A. Akl, Physical and optical properties of a-Ge–Sb–Se–Te bulk and thin film samples: refractive index and its association with electronic polarizability of thermally evaporate a-Ge15-xSbxSe50Te35 thin-films. J. Non-Cryst. Sol. 531, 119853 (2020)

    Article  CAS  Google Scholar 

  45. A.S. Hassanien, I.M. El Radaf, A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te20 bulk glasses and thin films. J. Alloys. Cpds. 849, 156718 (2020)

    Article  CAS  Google Scholar 

  46. S. Peng, F. Yang, L. Wu, Y. Qi, S. Zheng, D. Yin, X. Wang, Y. Zhou, Tm3+/Ho3+/Yb3+ codoped tellurite glass for multicolor emission—structure, thermal stability and spectroscopic properties. J. Alloys Cpds. 609, 14 (2014)

    Article  CAS  Google Scholar 

  47. N. Jaba, A. Mermet, E. Duval, B. Champagnon, Raman spectroscopy studies of Er3+ doped zinc tellurite glasses. J. Non-Cryst. Sol. 351, 833 (2005)

    Article  CAS  Google Scholar 

  48. S.N. Elliott, Amorphous materials: boson peak, in Encyclopedia of Materials: Science & Technology. (Elsevier, Amsterdam, 2001)

    Google Scholar 

  49. E.A. Lalla, A. Sanz-Arranz, M. Konstantinidis, J. Freemantle, P. Such, A.D. Lozano-Gorrín, V. Lavin, G. Lopez-Reyes, F. Rull-Pérez, U.R. Rodríguez-Mendozam, Raman-IR spectroscopic structural analysis of rare-earth (RE3+) doped fluorotellurite glasses at different laser wavelengths. Vib. Spect. 106, 103020 (2020)

    Article  CAS  Google Scholar 

  50. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583 (2015)

    Article  CAS  Google Scholar 

  51. S. Shen, A. Jha, Raman Spectroscopic and DTA studies of TeO2–ZnO–Na2O tellurite glasses. Adv. Mater. Res. 39–40, 159 (2008)

    Article  Google Scholar 

  52. R.T. Alves, A.C.A. Silva, N.O. Dantas, A.S. Gouveia-Neto, Raman and optical spectroscopy studies in Tm3+/Dy3+ -co doped zinc tellurite glasses. J. Lumin. 230, 117738 (2021)

    Article  CAS  Google Scholar 

  53. I. Savelli, J.C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Desevedavy, J.M. Dudley, J. Troles, L. Brilland, G. Renversez, F. Smektala, Suspended core tellurite glass optical fibers for infrared supercontinuum generation. Opt. Mater. 33, 1661 (2011)

    Article  CAS  Google Scholar 

  54. J. Li, X. Xiao, S. Gu, Y. Xu, Z. Zhou, H. Guo, Preparation and optical properties of TeO2–BaO–ZnO–ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications. Opt. Mat. 66, 567 (2017)

    Article  CAS  Google Scholar 

  55. P.F. Wang, W.N. Li, N. Peng, Effect of dehydration techniques on the fluorescence spectral feature and OH absorption of heavy metals containing fluoride tellurite glasses. J. Non-Cryst. Sol. 358, 788 (2012)

    Article  CAS  Google Scholar 

  56. J. Yue, T. Xue, F. Huang, M. Liao, Y. Ohishi, Thermally stable mid-infrared Fluoro tellurite glass with low OH content. J. Non-Cryst. Sol. 408, 1 (2015)

    Article  CAS  Google Scholar 

  57. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductor. Philos. Mag. 22, 903 (1970)

    Article  CAS  Google Scholar 

  58. J. Tauc, F. Abeles (eds.), Optical Properties of Solids (North Holland Publishing Co., Amsterdam, 1969)

    Google Scholar 

  59. M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Res. Phys. 7, 581 (2017)

    Google Scholar 

  60. M.K. Halimah, L. Hasnimulyati, A. Zakaria, S.A. Halim, M. Ishak, A. Azuraida, N.M. Al-Hada, Influence of gamma radiation on the structural and optical properties of thulium-doped glass. Mater. Sci. Eng. B 226, 158 (2017)

    Article  CAS  Google Scholar 

  61. L. Hasnimulyati, M.K. Halimah, A. Zakaria, S.A. Halim, M. Ishak, A comparative study of the experimental and the theoretical elastic data of Tm3+ doped zinc borotellurite glass. Mater. Chem. Phys. 192, 228 (2017)

    Article  CAS  Google Scholar 

  62. G. Sathiyapriya, K. Marimuthu, M.I. Sayyed, A. Askin, O. Agar, An investigation on physical, structural and gamma ray shielding features of Dy3+ ions doped Telluro borate glasses. J. Non-Cryst. Sol. 522, 119574 (2019)

    Article  CAS  Google Scholar 

  63. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Tech. Met. 45, 219 (2010)

    CAS  Google Scholar 

  64. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J Sol. Sta. Chem. 163, 100 (2002)

    Article  CAS  Google Scholar 

  65. K. Annapoorani, P. Karthikeyan, C. Basavapoornima, K. Marimuthu, Investigations on the optical properties of Dy3+ ions doped potassium aluminium telluroborate glasses for white light applications. J. Non-Cryst. Sol. 476, 128 (2017)

    Article  CAS  Google Scholar 

  66. Z.A. Said, M.M.R. Sahar, S.K. Ghoshal, Band gap and polarizability of boro-tellurite glass: influence of erbium ions. J. Mol Struc. 1072, 238 (2014)

    Article  CAS  Google Scholar 

  67. A. Usman, M.K. Halimah, A.A. Latif, F.D. Muhammad, A.I. Abubakar, Influence of Ho3+ ions on structural and optical properties of zinc borotellurite glass system. J. Non-Cryst. Sol. 483, 18 (2018)

    Article  CAS  Google Scholar 

  68. R. Lachheb, K. Damak, A.A. Assadi, A. Herrmann, E. Yousef, C. Rüssel, R. Maâlej, Characterization of Tm3+ doped TNZL glass laser material. J. Lumin. 161, 281 (2015)

    Article  CAS  Google Scholar 

  69. Y. Cheng, Z. Wu, X. Hu, T. Wu, W. Zhou, Thermal stability and optical properties of a novel Tm3+ doped fluorotellurite glass. J. Rare Earths 32, 1154 (2014)

    Article  CAS  Google Scholar 

  70. S. Bose, R. Debnath, Strong crystal-field effect and efficient phonon assisted Yb3+→ Tm3+ energy transfer in a (Yb3+/Tm3+) co-doped high barium-tellurite glass. J. Lumin. 155, 210 (2014)

    Article  CAS  Google Scholar 

  71. B.R. Judd, Optical absorption intensities of rare earth ions. Phys. Rev. 127, 750 (1962)

    Article  CAS  Google Scholar 

  72. G.S. Ofelt, Intensities of crystal spectra of rare earth ions. J. Chem. Phys. 37, 511 (1962)

    Article  CAS  Google Scholar 

  73. H.W. Li, S.Q. Man, Optical properties of Er3+ in MoO3–Bi2O3–TeO2 glasses. Opt. Commun. 282, 1579 (2009)

    Article  CAS  Google Scholar 

  74. M. Seshadri, V. Anjos, M.J.V. Bell, L.C. Barbosa, G.B.F. Bosco, L.R. Tessler, J. Suresh Kumar, M.P.F. Graça, M.J. Soares, M. Radha, Y.C. Ratnakaram, Doped tellurite glasses: extending near-infrared emission for near-2.0-μm amplifiers. Int. J. Appl. Glass. Sci. 8, 216 (2016)

    Article  CAS  Google Scholar 

  75. J. Liu, X. Huang, H. Pan, X. Zhang, X. Fang, W. Li, H. Zhang, A. Huang, Z. Xiao, Broadband near infrared emission of Er3+/Yb3+ co-doped fluorotellurite glass. J. Alloys. Cpds. 866, 158568 (2021)

    Article  CAS  Google Scholar 

  76. A.T. Gorgulu, H. Cankaya, A. Kurt, A. Speghini, M. Bettinelli, A. Sennaroglu, Spectroscopic characterization of Tm3+:TeO2–K2O–Nb2O5 glasses for 2-μm lasing applications. J. Lumin. 132, 110113 (2012)

    Google Scholar 

  77. J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, N. Peyghambarian, 2 μm lasing from highly thulium doped tellurite glass microsphere. Appl. Phys. Lett. 87, 211118 (2005)

    Article  CAS  Google Scholar 

  78. A. Miguel, M.A. Arriandiaga, R. Morea, J. Fernández, J. Gonzalo, R. Balda, Effect of Tm3+codoping on the near-infrared and upconversion emissions of Er3+ in TeO2–ZnO–ZnF2 glasses. J. Lumin. 154, 136 (2014)

    Article  CAS  Google Scholar 

  79. X. Song, K. Han, D. Zhou, P. Xu, P. Zhang, Broadband ~1.8 µm emission characteristics of Tm3+-doped bismuth germanate glass based on Ga2O3 modification. J. Non-Cryst. Sol. 557, 120575 (2021)

    Article  CAS  Google Scholar 

  80. S. Gao, X. Liu, X. Fan, X. Li, T. Xue, K. Li, M. Liao, L. Hu, ∼2 μm emission properties and non-radiative processes of Tm3+ in germanate glass. J. Appl. Phys. 116, 173108 (2014)

    Article  CAS  Google Scholar 

  81. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. J. Quan. Electron. 26, 760 (1990)

    Article  CAS  Google Scholar 

  82. M.V. Rao, V.R.K. Kumar, N.K. Shihab, D.N. Rao, Third order nonlinear and optical limiting properties of alkaline bismuth borate glasses. Opt. Las. Tech. 107, 110 (2018)

    Article  CAS  Google Scholar 

  83. R. Miedzinski, I. Fuks-Janczarek, M. Reben, Y. El Sayed Said, Z-Scan measurements of the third-order optical nonlinearities and linear optical properties of 70TeO2–5MxOy-10P2O5–10ZnO–5PbF2 glasses doped with Er3+ ions modified by transition metals. Opt. Mat. 85, 48 (2018)

    Article  CAS  Google Scholar 

  84. T.A. Hegde, A. Dutta, T.S. Girisun, M. Abith, G. Vinitha, Intensity tunable optical limiting behavior of an organometallic cesium hydrogen tartrate single crystal. J. Mater. Sci. Mater. Electron. 30, 1–12 (2019)

    Article  CAS  Google Scholar 

  85. C. Babeela, N.K. Siji Narendran, M. Pannipara, A.G. Al-Sehemi, T.C. Sabari Girisun, Excited state absorption assisted optical limiting action of Fe decorated γ-BBO nanorods. Mater. Chem. Phys. 237, 121827 (2019)

    Article  CAS  Google Scholar 

  86. P. Vani, G. Vinitha, N. Manikandan, Effect of dopants on the nonlinear optical properties of fluorotellurite glasses for optical limiting application. Phys. Scrip. 96(12), 125804 (2021)

    Article  Google Scholar 

  87. S. Kumari, Y. Sandeep, M. Devendran, Nonlinear optical characterization of zinc doped tellurite glasses for optical limiting performance. Optik 228, 166193 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SERB-DST through Project Grant SB/S2/LOP-013/2014. NM is grateful to DST for the grant. Authors also wish to thank Department of Physics, S.V. University-Tirupati, India for their support in experimental measurements established through MoU-DAE-BRNS Project Grant 2009/34/36/BRNS/3174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manikandan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vani, P., Vinitha, G., Naseer, K.A. et al. Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations. J Mater Sci: Mater Electron 32, 23030–23046 (2021). https://doi.org/10.1007/s10854-021-06787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06787-5

Navigation