Skip to main content
Log in

Optical, dielectric, laser damage threshold, dielectric and chemical etching properties of Co2+-doped sodium acid phthalate hemihydrate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The single crystals of pure and 1 mol% Co2+-doped sodium acid phthalate hemihydrate were grown by slow evaporation solution growth technique at room temperature (35 °C). Powder XRD analysis shows that the basic structure of the sodium acid phthalate hemihydrate crystal is unaltered due to Co2+ doping. The functional groups of the crystal were elucidated by Fourier transform infrared (FTIR) spectrum. The transmittance spectra show that the crystals have high transmittance in the entire visible–NIR region. Thermogravimetric curves show the decomposition temperatures as 118 °C and 124 °C for pure and doped crystals. Addition of metal ion increases the hardness of sodium acid phthalate hemihydrate crystal. The dielectric constant value of 1 mol% Co2+-doped crystal was found to be significantly less than that of pure crystal. Multiple-shot damage threshold was performed on (0 0 1) plane. NLO efficiency is increased as a result of metal Co2+ ion doping. The oval shaped etch pits are observed on both pure and doped crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Chandran, R. Paulraj, P. Ramasamy, J. Inorg. Organomet. Polym. 27, 1383–1390 (2017)

    Article  CAS  Google Scholar 

  2. X. Liu, X. Wang, X. Yin, S. Liu, W. He, L. Zhu, G. Zhang, D. Xu, CrystEngComm 16, 930–938 (2014)

    Article  CAS  Google Scholar 

  3. A. Smith, B. Do, M. Soderlund, Int. Soc. Opt. Photonics 6453, 645317 (2007)

    Google Scholar 

  4. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248 (1995)

    Article  CAS  Google Scholar 

  5. N. Bloembergen, IEEE J. Quantum Electron 10, 375–386 (1974)

    Article  CAS  Google Scholar 

  6. N.Goel, B.Kumar, J.Cryst.Growth 361 (2012) 44–50.

  7. A. Miniewicz, S. Bartkiewicz, Adv. Mater. Opt. Electron 2, 157–163 (1993)

    Article  CAS  Google Scholar 

  8. P. Kanchana, A.E. Kumaran, Y. Hayakawa, C. Sekar, Spectrochim. Acta Part A 103, 187–192 (2013)

    Article  CAS  Google Scholar 

  9. B.N. Mavrin, M.V. Koldaeva, R.M. Zakalyukin, T.N. Turskaya, Opt. Spectrosc. 100, 862–868 (2006)

    Article  CAS  Google Scholar 

  10. D. Xue, S. Zhang, Chem. Phys. Lett. 301, 449–452 (1999)

    Article  CAS  Google Scholar 

  11. K.A. Werling, M. Griffin, G.R. Hutchison, D.S. Lambrecht, J. Phys. Chem. A 118, 7404–7410 (2014)

    Article  CAS  Google Scholar 

  12. R.A. Smith, Acta Cryst. B 31, 2345 (1975)

    Article  Google Scholar 

  13. D. Sajan, N. Vijayan, K. Safakath, R. Philip, I.H. Joe, J. Phys. Chem. A 115, 8216–8226 (2011)

    Article  CAS  Google Scholar 

  14. N. Goel, N. Sinha, B. Kumar, Opt. Mater. 35, 479–486 (2013)

    Article  CAS  Google Scholar 

  15. S. Chandran, R. Paulraj, P. Ramasamy, Mater. Chem. Phy. 186, 365–371 (2017)

    Article  CAS  Google Scholar 

  16. K. Maeda, A. Sonoda, H. Miki, Y. Asakuma, K. Fukui, Cryst. Res. Technol. 39, 1006–1013 (2004)

    Article  CAS  Google Scholar 

  17. S.N.S. Devi, R.A. Kumar, E.K. Girija, Mater. Res. Innov. 20, 293–299 (2016)

    Article  CAS  Google Scholar 

  18. S.N.S. Devi, R.A. Kumar, E.K. Girija, Optik 127, 2419–2423 (2016)

    Article  CAS  Google Scholar 

  19. S.K. Geetha, R. Perumal, S. Moorthy Babu, P.M. Anbarasan, Cryst. Res. Technol. 41, 221–224 (2006)

    Article  CAS  Google Scholar 

  20. J.T.J. Prakash, J.M.S. Gnanaraj, S. Ekadevasena, Optik 126, 1821–1825 (2015)

    Article  CAS  Google Scholar 

  21. R.A. Kumar, N. Sivakumar, R.E. Vizhi, D.R. Babu, Phys. B 406, 985–991 (2011)

    Article  CAS  Google Scholar 

  22. S. Parthiban, S. Murali, G. Madhurambal, S.P. Meenakshisundaram, S.C. Mojumdar, J. Therm Anal Calorim. 100, 751–756 (2010)

    Article  CAS  Google Scholar 

  23. K.R. Rao, H.L. Bhat, S. Elizabeth, Mater. Chem. Phy. 137, 756–763 (2013)

    Article  CAS  Google Scholar 

  24. N.R. Rajagopalan, P. Krishnamoorthy, Optik 129, 118–129 (2017)

    Article  CAS  Google Scholar 

  25. V. Ganesh, M. Shkir, S. AlFaify, M.A. Sayed, Optik 127, 5479–5485 (2016)

    Article  CAS  Google Scholar 

  26. V. Ganesh, M. Shkir, S. AlFaify, I.S. Yahia, J. Cryst. Growth 449, 47–56 (2016)

    Article  CAS  Google Scholar 

  27. S.K. Kurtz, T.T. Perry, J. Phys. D: Appl. Phys. 39, 3798 (1968)

    CAS  Google Scholar 

  28. C.J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill Book Company, New York, 1962)

    Google Scholar 

  29. V. Sangeetha, K. Gayathri, P. Krishnan, N. Sivakumar, N. Kanagathara, G. Anbalagan, J. Cryst. Growth 389, 30–38 (2014)

    Article  CAS  Google Scholar 

  30. M. Suresh, S.A. Bahadur, S. Athimoolam, J Mater Sci: Mater Electron 28, 661–672 (2017)

    CAS  Google Scholar 

  31. N. Goel, N. Sinha, B. Kumar, Mater. Res. Bull. 48, 1632–1636 (2013)

    Article  CAS  Google Scholar 

  32. M. Anis, G.G. Muley, Opt. Laser Technol. 90, 190–196 (2017)

    Article  CAS  Google Scholar 

  33. P. Krishnan, K. Gayathri, M. Jayasakthi, S. Gunasekaran, G. Anbalagan, J. Cryst. Growth 383, 43–50 (2013)

    Article  CAS  Google Scholar 

  34. M. Anis, M.I. Baig, G.G. Muley, S.S. Hussaini, M.D. Shirsat, Optik 127, 12043–12047 (2016)

    Article  CAS  Google Scholar 

  35. S. Ramesh, M.F. Chai, Mater. Sci. Eng. B 139, 240–245 (2007)

    Article  CAS  Google Scholar 

  36. M. Suresh, S.A. Bahadur, S. Athimoolam, J. Mater Sci: Mater Electron 28, 661–672 (2017)

    CAS  Google Scholar 

  37. R.C. Miller, Appl. Phys. Lett. 5, 17–19 (1964)

    Article  CAS  Google Scholar 

  38. M. Arivanandhan, X. Huang, S. Uda, G. Bhagavannarayana, N. Vijayan, K. Sankaranarayanan, P. Ramasamy, J. Cryst. Growth 310, 4587–4592 (2008)

    Article  CAS  Google Scholar 

  39. M. Magesh, G.A. Babu, P. Ramasamy, J. Cryst. Growth 324, 201–206 (2011)

    Article  CAS  Google Scholar 

  40. S. Ly, N. Shen, R.A. Negres, C.W. Carr, D.A. Alessi, J.D. Bude, A. Rigatti, T.A. Laurence, Opt. Express 25, 15161–15178 (2017)

    Article  CAS  Google Scholar 

  41. T.A. Laurence, R.A. Negres, S. Ly, N. Shen, C.W. Carr, D.A. Alessi, A. Rigatti, J.D. Bude, Opt. Express 25, 15381–15401 (2017)

    Article  CAS  Google Scholar 

  42. P. Vivek, P. Murugakoothan, Opt. Laser Technol. 49, 288–295 (2013)

    Article  CAS  Google Scholar 

  43. C.W. Carr, M.D. Feit, M.A. Johnson, A.M. Rubenchik, Appl. Phys. Lett. 89, 131901 (2006)

    Article  CAS  Google Scholar 

  44. J.B. Reddy, S. Vanishri, G. Kamath, S. Elizabeth, H.L. Bhat, D. Isakov, M. Belsley, E. de MatosGomes, T.L. Aroso, J. Cryst. Growth 311, 4044–4049 (2009)

    Article  CAS  Google Scholar 

  45. S. Vanishri, H.L. Bhat, A. Deepthy, V.P.N. Nampoori, E. de MatosGomes, M. Belsley, J. Appl. Phys. 99, 083107 (2006)

    Article  CAS  Google Scholar 

  46. H. Nakatani, W.R. Bosenberg, L.K. Cheng, C.L. Tang, Appl. Phys. Lett. 53, 2587–2589 (1988)

    Article  CAS  Google Scholar 

  47. Y. Wang, D.F. Eaton, Chem. Phys. Lett. 120, 441–444 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Chandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, S., John James, G. & Rajesh, P. Optical, dielectric, laser damage threshold, dielectric and chemical etching properties of Co2+-doped sodium acid phthalate hemihydrate single crystal. J Mater Sci: Mater Electron 32, 20362–20373 (2021). https://doi.org/10.1007/s10854-021-06546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06546-6

Navigation