Skip to main content
Log in

Electrical conduction mechanism in nanocrystalline ZnO induced by donor/acceptor doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanocrystallites were synthesized using the method of ultrasonication and elements like boron (B) and nitrogen (N) were doped into ZnO using the same method of preparation. The structural changes studied by X-ray diffraction (XRD) technique include the modification in crystallite size and microstrain in ZnO upon B/N doping. Shifting and broadening of XRD peak positions with doping have also been observed and discussed. Nanosheet like morphology of the doped samples has been observed from the field emission scanning electron microscopic (FESEM) measurement and impurity doping has been confirmed from EDAX and elemental mapping analysis. The increase in boron/nitrogen doping concentration leads to a blue shift of absorption wavelength which results in an increase in the band gap of ZnO. Hall measurement shows a decrease in electrical resistivity of B-ZnO for initial doping concentration of boron but increases for higher concentration. This may be due to the contribution of extra free electrons from B3+ ions in substituting Zn2+ in regular sites or in interstitial positions. The increase in resistivity of B-ZnO for higher concentration of boron may be explained on the basis of solubility limit of boron in ZnO lattice. Boron doping also helps in the increase in carrier concentration, conductivity and mobility of carriers in ZnO. For N-ZnO, there is an increase in carrier concentration, mobility and conductivity values with initial doping concentration of nitrogen but decrease thereafter. The carrier type remains as n-type with the resistivity value decreasing with initial doping concentration. P-type conduction is observed in N-ZnO (for higher doping concentration) with increased resistivity which is possible due to the increased (N)O acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request of researchers.

References

  1. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today 7(6), 34 (2004)

    Article  CAS  Google Scholar 

  2. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  3. Z. Wang, Q. Li, Y. Yuan, L. Yang, H. Zhang, Z. Liu, J. Ouyang, Q. Chen, AIP Adv. 10, 035122 (2020)

    Article  CAS  Google Scholar 

  4. R. Kumari, A. Sahai, N. Goswami, Prog. Nat. Sci. 25, 300 (2015)

    Article  CAS  Google Scholar 

  5. S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Sci. Rep. 10, 638 (2020)

    Article  CAS  Google Scholar 

  6. S. Söllradl, M. Greiwe, V.J. Bukas, M.R. Buchner, M. Widenmeyer, T. Kandemir, T. Zweifel, A. Senyshyn, S. Günther, T. Nilges, A. Türler, R. Niewa, Chem. Mater. 27, 4188 (2015)

    Article  Google Scholar 

  7. C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)

    Article  Google Scholar 

  8. B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Chevire, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarstrom, F. Odobel, S. Jobic, J. Am. Chem. Soc. 134, 464 (2012)

    Article  CAS  Google Scholar 

  9. K. Lee, Y. Kim, N. Song, I.-H. Choi, S.Y. Park, Curr. Appl. Phys. 19, 14 (2019)

    Article  Google Scholar 

  10. G. Kim, J. Bang, Y. Kim, S.K. Rout, S. Woo, Appl. Phys. A 97, 821 (2009)

    Article  CAS  Google Scholar 

  11. L. Wang, D. Jiangping, T. Lu, T. Yahui, X. Fei, J. Qianshao, P. Shengjiang, J. Mater. Sci. 31, 6654 (2020)

    Google Scholar 

  12. B. Wen, C.Q. Liu, N. Wang, H.L. Wang, S.M. Liu, Y.H. Ren, W.P. Chai, Appl. Phys. A 123, 211 (2017)

    Article  Google Scholar 

  13. S. Jana, A.S. Vuk, A. Mallick, B. Orel, P.K. Biswas, Mater. Res. Bull. 46, 2392 (2011)

    Article  CAS  Google Scholar 

  14. C.Y. Tsay, W.T. Hsu, Ceram. Int. 39, 7425 (2013)

    Article  CAS  Google Scholar 

  15. V. Kumar, R.G. Singh, L.P. Purohit, R.M. Mehra, J. Mater. Sci. Technol. 27, 481 (2011)

    Article  CAS  Google Scholar 

  16. W. Li, Y. Li, G. Du, N. Chen, S. Liu, S. Wang, H. Huang, C. Lu, X. Niu, Ceram. Int. 42, 1361 (2016)

    Article  CAS  Google Scholar 

  17. B.N. Pawar, G. Cai, D. Ham, R.S. Mane, T. Ganesh, A. Ghule, R. Sharma, K.D. Jadhava, S.H. Han, Solar Energy Mater. Solar Cells. 93, 524–527 (2009)

    Article  CAS  Google Scholar 

  18. D.C. Look, B. Claflin, Phys. Status Solidi B 241, 624 (2004)

    Article  CAS  Google Scholar 

  19. Z.N. Kayani, Z. Bashir, S. Riaz, S. Naseem, Z. Saddiqe, J. Mater. Sci. 31, 11911 (2020)

    CAS  Google Scholar 

  20. W. Wang, T. Ai, Q. Yu, Sci. Rep. 7, 42615 (2017)

    Article  CAS  Google Scholar 

  21. Y. Badali, S. Kocyigit, A. Aytimur, S. Altındal, I. Uslu, Polym. Compos. 40, 3623 (2019)

    Article  CAS  Google Scholar 

  22. Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Y. Lu, D. Shen, X. Fan, Semicond. Sci. Technol. 20, 796 (2005)

    Article  CAS  Google Scholar 

  23. R. Triboulet, J. Perriere, Prog. Cryst. Growth Charact. Mater. 47, 65 (2003)

    Article  CAS  Google Scholar 

  24. Y. Yan, M.M. Al-Jassim, S.H. Wei, Appl. Phys. Lett. 89, 181912 (2006)

    Article  Google Scholar 

  25. Y.F. Lu, K.W. Wu, Y.J. Zeng, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Chem. Phys. Lett. 582, 82 (2013)

    Article  CAS  Google Scholar 

  26. Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, B.H. Zhao, Appl. Phys. Lett. 88, 062107 (2006)

    Article  Google Scholar 

  27. Y.J. Zeng, Z.Z. Ye, J.G. Lu, W.Z. Xu, L.P. Zhu, B.H. Zhao, S. Limpijumnong, Appl. Phys. Lett. 89, 042106 (2006)

    Article  Google Scholar 

  28. J.F. Rommeluere, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003)

    Article  CAS  Google Scholar 

  29. S. Limpijumnong, S.B. Zhang, S.-H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504 (2004)

    Article  Google Scholar 

  30. Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, D.P. Norton, Appl. Phys. Lett. 84, 3474 (2004)

    Article  CAS  Google Scholar 

  31. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan et al., J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  32. Z.-N. Ng, K.-Y. Chan, S. Muslimin, D. Knipp, J. Electron. Mater. 47, 5607 (2018)

    Article  CAS  Google Scholar 

  33. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)

    Article  CAS  Google Scholar 

  34. J.C. Sun, H.W. Liang, J.Z. Zhao, J.M. Bian, Q.J. Feng, L.Z. Hu, H.Q. Zhang, X.P. Lianga, Y.M. Luoa, G.T. Dua, Chem. Phys. Lett. 460, 548 (2008)

    Article  CAS  Google Scholar 

  35. J. Huang, S. Chu, J. Kong, L. Zhang, C.M. Schwarz, G. Wang, L. Chernyak, Z. Chen, J. Liu, Adv. Opt. Mater. 1, 179 (2013)

    Article  Google Scholar 

  36. R. Swapna, M.C. Santhosh Kumar, Mater. Res. Bull. 49, 44 (2014)

    Article  CAS  Google Scholar 

  37. X.Y. Chen, F. Fang et al., J. Appl. Phys. 109, 084330 (2011)

    Article  Google Scholar 

  38. H. Huang, Q. Zhao, K. Hong, Q. Xu, X. Huang, Phys. E. 57, 113 (2014)

    Article  CAS  Google Scholar 

  39. S.J. Lim, S.J. Kwon, H. Kim, J.S. Park, Appl. Phys. Lett. 91, 183517 (2007)

    Article  Google Scholar 

  40. G. Kale, S. Arbuj, U. Kawade, S. Rane, J. Ambekar, B. Kale, Mater. Chem. Front. 2, 163 (2018)

    Article  CAS  Google Scholar 

  41. Y. Liu, H.-J. Jin, C.-B. Park, Trans. Electr. Electron. Mater. 10, 24 (2009)

    Article  Google Scholar 

  42. J. Lu, Q. Liang, Y. Zhang, Z. Ye, S. Fujita, J. Phys. D 40, 3177 (2007)

    Article  CAS  Google Scholar 

  43. J.-H. Leem, D.-H. Lee, S.Y. Lee, Thin Solid Films 518, 1238 (2009)

    Article  CAS  Google Scholar 

  44. A. Zeuner, H. Alves, J. Sann et al., Phys. Stat. Sol. C 1, 731 (2004)

    Google Scholar 

  45. M.C. Tarun, M. Zafar Iqbal, M.D. McCluskey, AIP Adv. 1, 022105 (2011)

    Article  Google Scholar 

  46. J.L. Lyons, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009)

    Article  Google Scholar 

  47. S.T. Teklemichael et al., Appl. Phys. Lett. 98, 232112 (2011)

    Article  Google Scholar 

  48. K.S. Suslick, G.J. Price, Annu. Rev. Mater. Sci. 29, 295 (1999)

    Article  CAS  Google Scholar 

  49. A. Gedanken, Ultrasonics Sonochem. 11(2), 47 (2004)

    Article  CAS  Google Scholar 

  50. B.N. Pawar et al., J. Phys. Chem. Sol. 66, 1779 (2005)

    Article  CAS  Google Scholar 

  51. Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Appl. Phys. Lett. 8, 172103 (2006)

    Article  Google Scholar 

  52. M.-L. Tu, Y.-K. Su, C.-Y. Ma, J. Appl. Phys. 100, 053705 (2006)

    Article  Google Scholar 

  53. A.K. Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  Google Scholar 

  54. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theoret. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  55. N.P. Herring, L.S. Panchakarla, M.S. El-Shall, Langmuir 30, 2230 (2014)

    Article  CAS  Google Scholar 

  56. Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, H.H. Hng, B.K. Tay, J. Cryst. Growth 252, 265 (2003)

    Article  CAS  Google Scholar 

  57. J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, Y. Zheng, J. Cryst. Growth 243, 151 (2002)

    Article  CAS  Google Scholar 

  58. R. Karmakar, S.K. Neogi, A. Banerjee, S. Bandyopadhyay, Appl. Surf. Sci. 263, 671 (2012)

    Article  CAS  Google Scholar 

  59. C. Suryanarayan, N. Grant, X-Ray Diffraction: A Practical Approach (Plenum Press, New York, 1998)

    Book  Google Scholar 

  60. S. Ilican, F. Yakuphanoglu, M. Caglar, Y. Caglar, J. Alloys Compds. 509, 5290 (2011)

    Article  CAS  Google Scholar 

  61. J. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)

    Article  CAS  Google Scholar 

  62. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, J. Phys. D: Appl. Phys. 39, 4992 (2006)

    Article  CAS  Google Scholar 

  63. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Alloys Compds. 509, 3177 (2011)

    Article  CAS  Google Scholar 

  64. R.B.H. Tahar, N.B.H. Tahar, J. Mater. Sci. 40, 5285 (2005)

    Article  CAS  Google Scholar 

  65. S.W. Kim, S.Z. Fujita, S.G. Fujita, Appl. Phys. Lett. 81, 5036 (2002)

    Article  CAS  Google Scholar 

  66. Y. Yamamoto, K. Saito, K. Takahashi, M. Konagai, Sol. Energy Mater. Sol. Cells 65, 125 (2001)

    Article  CAS  Google Scholar 

  67. J. Coates, Interpretation of infrared spectra: a practical approach, in Encyclopaedia of Analytical Chemistry. ed. by R.A. Meyers (Wiley, Chichester, 2000), p. 10815

    Google Scholar 

  68. B. Stuart, FTIR Spectroscopy: Fundamentals and Applications. Analytical Techniques in the Sciences (Wiley, New York, 2004)

    Google Scholar 

  69. D. Sahu, B.S. Acharya, A.K. Panda, Ultrason. Sonochem. 18, 601 (2011)

    Article  CAS  Google Scholar 

  70. D. Sahu, B.S. Acharya, B.P. Bag, T. Basanta, R.K. Gartia, J. Lumin. 130, 1371 (2010)

    Article  CAS  Google Scholar 

  71. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  72. O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, J.T. Yates Jr., J. Phys. Chem. B 108, 52 (2004)

    Article  CAS  Google Scholar 

  73. C.Y. Tsay et al., J. Alloys Compds. 512, 216 (2012)

    Article  CAS  Google Scholar 

  74. B. Houng et al., J. Cryst. Growth 307, 328 (2007)

    Article  CAS  Google Scholar 

  75. S. Dhara, P.K. Giri, Thin Solid Films 520, 5000 (2012)

    Article  CAS  Google Scholar 

  76. S. Sun, X. Chang, X. Li, Z. Li, Ceram. Int. 39, 5197 (2013)

    Article  CAS  Google Scholar 

  77. P.V. Kamat, N.M. Dimitrijevic, A.J. Nozik, J. Phys. Chem. 93, 2873 (1989)

    Article  CAS  Google Scholar 

  78. T. S. Moss, Proc. Phys. Soc. B 67, 775 (1954)

    Article  Google Scholar 

  79. K.K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H.S. Nagaraja, P. Poornesh, Laser Phys. 24, 085402 (2014)

    Article  CAS  Google Scholar 

  80. N.R. Yogamalar, M. Ashok, A.C. Bose, Funct Mater. Lett. 4, 271 (2011)

    Article  CAS  Google Scholar 

  81. K. Ellmer, J. Phys. D 34, 3097–3108 (2001)

    Article  CAS  Google Scholar 

  82. A.K. Kulkarni, K.H. Schulz, T.S. Lim, M. Khan, Thin Solid Films 345, 273 (1999)

    Article  Google Scholar 

  83. A. Favier, D. Munoz, S.M. de Nicolas, P.J. Ribeyron, Sol. Energy Mater. Sol. Cells 95, 1057 (2011)

    Article  CAS  Google Scholar 

  84. J. Steinhauser, S. Fay, N. Oliveira, E.V. Sauvain, C. Ballif, Appl. Phys. Lett. 90, 142107 (2007)

    Article  Google Scholar 

  85. L. Li, C.X. Shan et al., J. Phys. D 41, 245402 (2008)

    Article  Google Scholar 

  86. S. Limpijumnong, X. Li, S.-H. Wei, S.B. Zhang, Appl. Phys. Lett. 86, 211910 (2005)

    Article  Google Scholar 

  87. C.L. Perkins, S.-H. Lee, X. Li, S.E. Asher, T.J. Coutts, J. Appl. Phys. 97, 034907 (2005)

    Article  Google Scholar 

  88. E.-C. Lee, Y.S. Kim, Y.G. Jin, K.J. Chang, Phys. Rev. B 64, 085120 (2001)

    Article  Google Scholar 

  89. Y. Yan, S.B. Zhang, S.T. Pantelides, Phys. Rev. Lett. 86(25), 5723 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the well-wishers for their invisible blessings and support to carry out this work. NRP is thankful to Prof. B.S. Acharya for his valuable guidance.

Funding

No funding has been received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar Ranjan Panda.

Ethics declarations

Conflict of interest

There exists no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D., Palai, A. & Panda, N.R. Electrical conduction mechanism in nanocrystalline ZnO induced by donor/acceptor doping. J Mater Sci: Mater Electron 33, 8504–8518 (2022). https://doi.org/10.1007/s10854-021-06401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06401-8

Navigation