Skip to main content

Advertisement

Log in

Synthesis of 2D-CZTS nanoplate as photocathode material for efficient PEC water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabrication of economically feasible photocathode for hydrogen energy production through solar water splitting is a major research among the scientific community for a decade. P-type compound Cu2ZnSnS4 (CZTS) is very interesting material due to its absorption property, earth-abundant constituents and environmental friendliness that serves as a suitable candidate to act as a photocathode. In the present work, Cu2ZnSnS4 (CZTS) nanoparticles are synthesized by simple one-step chemical method and annealed at 350 °C for three different times (60 min, 90 min, and 120 min). The effect of annealing time on the structural, optical and photoelectrochemical properties are investigated. XRD pattern indicates the formation of tetragonal crystal structure and the crystallinity increases according to the annealing time. 2D nanoplate morphology is obtained for the sample that was annealed for 120 min. From the absorption spectra, it was found that the bandgap decreases with increase of annealing time. Further, the prepared nanoparticle thin films are used as a cathode for photoelectrochemical water splitting application. Among these, the nanoparticles that are annealed for 120 min showed higher photocurrent density when compared to nanoparticles annealed for 60 min and 90 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Sripan, V.E. Madhavan, A.K. Viswanath, R. Ganesan, Sulfurization and annealing effects on thermally evaporated CZTS films. Mater. Lett. 189, 110–113 (2017). https://doi.org/10.1016/j.matlet.2016.11.094

    Article  CAS  Google Scholar 

  2. J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360–1384 (2015). https://doi.org/10.1039/c4cy00974f

    Article  CAS  Google Scholar 

  3. Y. Chen, X. Feng, M. Liu, J. Su, S. Shen, Towards efficient solar-to-hydrogen conversion: fundamentals and recent progress in copper-based chalcogenide photocathodes. Nanophotonics 5, 468–491 (2016). https://doi.org/10.1515/nanoph-2016-0027

    Article  CAS  Google Scholar 

  4. C.K. Sumesh, S.C. Peter, Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Trans. 48, 12772–12802 (2019). https://doi.org/10.1039/c9dt01581g

    Article  CAS  Google Scholar 

  5. C. Ros, T. Andreu, J.R. Morante, Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. J. Mater. Chem. A 8, 10625–10669 (2020). https://doi.org/10.1039/d0ta02755c

    Article  CAS  Google Scholar 

  6. N.K. Awad, E.A. Ashour, N.K. Allam, Recent advances in the use of metal oxide-based photocathodes for solar fuel production. J. Renew. Sustain. Energy (2014). https://doi.org/10.1063/1.4871899

    Article  Google Scholar 

  7. Q. Huang, Z. Ye, X. Xiao, Recent progress in photocathodes for hydrogen evolution. J. Mater. Chem. A 3, 15824–15837 (2015). https://doi.org/10.1039/c5ta03594e

    Article  CAS  Google Scholar 

  8. A.I. Inamdar, K.Y. Jeon, H.S. Woo, W. Jung, H. Im, H. Kim, Controlled growth of Cu2ZnSnS4 (CZTS) thin films for heterojunction solar-cell applications. J. Korean Phys. Soc. 60, 1730–1734 (2012). https://doi.org/10.3938/jkps.60.1730

    Article  CAS  Google Scholar 

  9. K.S. Lim, S.M. Yu, A.R. Khalkar, T.S. Oh, J. Nam, D.W. Shin, J.B. Yoo, Comparison of Cu2ZnSnS4 thin films and solar cell performance using Zn target with ZnS target. J. Alloys Compd. 650, 641–646 (2015). https://doi.org/10.1016/j.jallcom.2015.08.056

    Article  CAS  Google Scholar 

  10. J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun, P. Yang, J. Chu, Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited Cu-Zn-Sn-S precursor layers for solar cell applications. RSC Adv. 4, 23977–23984 (2014). https://doi.org/10.1039/c4ra02327g

    Article  CAS  Google Scholar 

  11. K. Muska, M. Kauk, M. Altosaar, M. Pilvet, M. Grossberg, O. Volobujeva, Synthesis of Cu2ZnSnS4 monograin powders with different compositions. Energy Proc. 10, 203–207 (2011). https://doi.org/10.1016/j.egypro.2011.10.178

    Article  CAS  Google Scholar 

  12. D.C. Nguyen, S. Ito, D.V.A. Dung, Effects of annealing conditions on crystallization of the CZTS absorber and photovoltaic properties of Cu(Zn, Sn)(S, Se)2 solar cells. J. Alloys Compd. 632, 676–680 (2015). https://doi.org/10.1016/j.jallcom.2015.01.258

    Article  CAS  Google Scholar 

  13. E. Kask, T. Raadik, M. Grossberg, R. Josepson, J. Krustok, Deep defects in Cu2ZnSnS4 monograin solar cells. Energy Proc. 10, 261–265 (2011). https://doi.org/10.1016/j.egypro.2011.10.188

    Article  CAS  Google Scholar 

  14. M. Jeon, Y. Tanaka, T. Shimizu, S. Shingubara, Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: effect of complexing agent volume. Energy Proc. 10, 255–260 (2011). https://doi.org/10.1016/j.egypro.2011.10.187

    Article  CAS  Google Scholar 

  15. H. Zhou, W.C. Hsu, H.S. Duan, B. Bob, W. Yang, T. Bin Song, C.J. Hsu, Y. Yang, CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 6, 2822–2838 (2013). https://doi.org/10.1039/c3ee41627e

    Article  CAS  Google Scholar 

  16. D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen, H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express (2010). https://doi.org/10.1143/APEX.3.101202

    Article  Google Scholar 

  17. Y. Zhang, S. Ouyang, Q. Yu, P. Li, J. Ye, Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode. Chem. Commun. 51, 14057–14059 (2015). https://doi.org/10.1039/c5cc04812e

    Article  CAS  Google Scholar 

  18. K. Ramachandran, M. Geerthana, P. Maadeswaran, B. Liang, R. Ramesh, Enhanced photoelectrochemical water splitting performance of hematite photoanodes by hybrid microwave annealing process. Optik (Stuttg) 212, 164658 (2020). https://doi.org/10.1016/j.ijleo.2020.164658

    Article  CAS  Google Scholar 

  19. L. Dong, S. Cheng, Y. Lai, H. Zhang, H. Jia, Sol-gel processed CZTS thin film solar cell on flexible molybdenum foil. Thin Solid Films 626, 168–172 (2017). https://doi.org/10.1016/j.tsf.2017.02.019

    Article  CAS  Google Scholar 

  20. S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Effect of deposition temperature on the structural and electrical properties of spray deposited kesterite (Cu2ZnSnS4) films. Sol. Energy 122, 508–516 (2015). https://doi.org/10.1016/j.solener.2015.09.027

    Article  CAS  Google Scholar 

  21. D. Fan, R. Zhang, Y. Zhu, H. Peng, J. Zhang, Structural development and dynamic process in sulfurizing precursors to prepare Cu2ZnSnS4 absorber layer. J. Alloys Compd. 583, 566–573 (2014). https://doi.org/10.1016/j.jallcom.2013.08.216

    Article  CAS  Google Scholar 

  22. N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Mater. Res. Bull. 47, 302–307 (2012). https://doi.org/10.1016/j.materresbull.2011.11.020

    Article  CAS  Google Scholar 

  23. M.J. Chithra, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of zno nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (Engl. Lett.) 28, 394–404 (2015). https://doi.org/10.1007/s40195-015-0218-8

    Article  CAS  Google Scholar 

  24. A.E. Hassanien, S. Abdelhaleem, R. Ahmad, M. Schuster, S.H. Moustafa, M. Distaso, W. Peukert, P.J. Wellmann, Effect of fast annealing on structural characteristics and optical properties of Cu2ZnSnS4 absorber films deposited by doctor-blade technique. J. Nanoelectron. Optoelectron. 14, 1394–1400 (2019). https://doi.org/10.1166/jno.2019.2633

    Article  CAS  Google Scholar 

  25. L. Chen, C. Park, Effects of annealing temperature on Cu2ZnSnS4 (CZTS) films formed by electrospray technique. Korean J. Chem. Eng. 34, 1187–1191 (2017). https://doi.org/10.1007/s11814-017-0011-7

    Article  CAS  Google Scholar 

  26. G. Grinciene, V. Pakštas, R. Giraitis, G. Niaura, A. Naujokaitis, J. Juodkazyte, L. Tamašauskaite-Tamašiunaite, R. Juškenas, B. Šimkunaite-Stanyniene, E. Norkus, Properties and characterization of CZTS nanoparticles prepared by microwave heating irradiation. Chemija 29, 29–40 (2018). https://doi.org/10.6001/chemija.v29i1.3641

    Article  CAS  Google Scholar 

  27. Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 93, 1230–1237 (2009). https://doi.org/10.1016/j.solmat.2009.01.011

    Article  CAS  Google Scholar 

  28. S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, Y.W. Oh, P.S. Patil, Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. J. Phys. Chem. Solids 73, 735–740 (2012). https://doi.org/10.1016/j.jpcs.2012.01.008

    Article  CAS  Google Scholar 

  29. A.G. Kannan, T.E. Manjulavalli, J. Chandrasekaran, Influence of solvent on the properties of CZTS nanoparticles. Proc. Eng. 141, 15–22 (2016). https://doi.org/10.1016/j.proeng.2015.08.1112

    Article  CAS  Google Scholar 

  30. E.M. Mkawi, Y. Al-Hadeethi, E. Shalaan, E. Bekyarova, Solution-processed sphere-like Cu2ZnSnS4 nanoparticles for solar cells: effect of oleylamine concentration on properties. Appl. Phys. A 126, 2–9 (2020). https://doi.org/10.1007/s00339-019-3233-1

    Article  CAS  Google Scholar 

  31. J. Wang, P. Zhang, X. Song, L. Gao, Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties. RSC Adv. 4, 27805–27810 (2014). https://doi.org/10.1039/c4ra03444a

    Article  CAS  Google Scholar 

  32. J. Raiguru, B.V.R.S. Subramanyam, K. Sa, I. Alam, S. Das, J. Mukherjee, P.C. Mahakul, B. Subudhi, P. Mahanandi, Impact of annealing temperature on the phase of CZTS with the variation in surface morphological changes and extraction of optical bandgap. IOP Conf. Ser. Mater. Sci. Eng. 178, 012017 (2017). https://doi.org/10.1088/1757-899X/178/1/012017

    Article  Google Scholar 

  33. P.A. Fernandes, P.M.P. Salomé, A.F. Da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600–7606 (2011). https://doi.org/10.1016/j.jallcom.2011.04.097

    Article  CAS  Google Scholar 

  34. F. Mehmood, J. Iqbal, A. Gul, W. Ahmed, M. Ismail, Facile synthesis of 2-D Cu doped WO3 nanoplates with structural, optical and differential anti cancer characteristics. Phys. E 88, 188–193 (2017). https://doi.org/10.1016/j.physe.2016.12.008

    Article  CAS  Google Scholar 

  35. D.K. Maurya, S. Sikarwar, P. Chaudhary, S. Angaiah, B.C. Yadav, Synthesis and characterization of nanostructured copper zinc tin sulphide (CZTS) for humidity sensing applications. IEEE Sens. J. 19, 2837–2846 (2019). https://doi.org/10.1109/JSEN.2018.2890309

    Article  CAS  Google Scholar 

  36. K. Rawat, P.K. Shishodia, Structural and optical properties of sol gel derived Cu2ZnSnS4 nanoparticles. Adv. Powder Technol. 28, 611–617 (2017). https://doi.org/10.1016/j.apt.2016.11.013

    Article  CAS  Google Scholar 

  37. M. Patel, I. Mukhopadhyay, A. Ray, Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J. Phys. D (2012). https://doi.org/10.1088/0022-3727/45/44/445103

    Article  Google Scholar 

  38. R.J. Deokate, A.D. Adsool, N.S. Shinde, S.M. Pawar, C.D. Lokhande, Structural and optical properties of spray-deposited Cu2ZnSnS4 thin films. Energy Proc. 54, 627–633 (2014). https://doi.org/10.1016/j.egypro.2014.07.304

    Article  CAS  Google Scholar 

  39. B.L. Guo, Y.H. Chen, X.J. Liu, W.C. Liu, A.D. Li, Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Adv. (2014). https://doi.org/10.1063/1.4895520

    Article  Google Scholar 

  40. A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, S.F. Bent, Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films 519, 2488–2492 (2011). https://doi.org/10.1016/j.tsf.2010.11.040

    Article  CAS  Google Scholar 

  41. S. Sarkar, K. Bhattacharjee, G.C. Das, K.K. Chattopadhyay, Self-sacrificial template directed hydrothermal route to kesterite-Cu2ZnSnS4 microspheres and study of their photo response properties. CrystEngComm 16, 2634–2644 (2014). https://doi.org/10.1039/c3ce42229a

    Article  CAS  Google Scholar 

  42. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, E.M. Barea, E. Palomares, A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361, 684–698 (2008). https://doi.org/10.1016/j.ica.2007.05.032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Venugopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, V., Venugopal, D., Ramachandran, K. et al. Synthesis of 2D-CZTS nanoplate as photocathode material for efficient PEC water splitting. J Mater Sci: Mater Electron 33, 8493–8503 (2022). https://doi.org/10.1007/s10854-021-06400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06400-9

Navigation