Skip to main content
Log in

Effect of CdS thin film on the performance of methylammonium lead iodide perovskite solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study focuses on to examine the effect of CdS-based electron transport layer on the performance of perovskite solar cell. Based on the novel device architecture, CdS was fabricated using chemical bath deposition at different time interval of 10, 20, and 30 min. However, the perovskite layer was prepared by two-step spin coating technique in order to achieve better structural properties. The analyzed perovskite solar cell shows a very good power conversion efficiency of 11.69%, Jsc 15.4 mA/cm2, Voc of 1.0 V, and FF of 0.75 for the device structure CdS/CH3NH3PbI3/Spiro-OMeTAD for CdS grown for 10 min. Finally, the study discusses on various factors like effect of microstrain, dislocation density, and series resistance on the photovoltaic performance of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518–2534 (2014)

    Article  CAS  Google Scholar 

  2. K. Suranjit, T. Amin, S. Katuva, M. Kumari, K. Selvaraj, Synthesis of water soluble CdS nanoparticles and study of their DNA damage activity. Arab. J. Chem. 10, S3929–S3935 (2017). https://doi.org/10.1016/j.arabjc.2014.05.033

    Article  CAS  Google Scholar 

  3. Q. Zhou et al., Structural and optical properties of the three-dimensional CdS nanocone arrays on the self-assembled Cd/CdS core-shell microspheres. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.2740471

    Article  Google Scholar 

  4. T. Oku, Crystal structures of CH3NH3PbI3 and related Perovskite compounds used for solar cells. Sol. Cells New Approach. Rev. (2015). https://doi.org/10.5772/59284

    Article  Google Scholar 

  5. A. Bahtiar, S. Rahmanita, Y. D. Inayatie, Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method, in IOP Conf. Ser. Mater. Sci. Eng., vol. 196, no. 1, (2017). https://doi.org/10.1088/1757-899X/196/1/012037.

  6. M. Wang, Y. Feng, J. Bian, H. Liu, Y. Shi, A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chem. Phys. Lett. 692, 44–49 (2018). https://doi.org/10.1016/j.cplett.2017.12.012

    Article  CAS  Google Scholar 

  7. X. Ziang et al., Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mater. Express 5(1), 29 (2015). https://doi.org/10.1364/ome.5.000029

    Article  Google Scholar 

  8. Y. Ma et al., Boosting efficiency and stability of Perovskite solar cells with CdS inserted at TiO2/Perovskite interface. Adv. Mater. Interfaces (2016). https://doi.org/10.1002/admi.201600729

    Article  Google Scholar 

  9. G. Tong et al., Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer. RSC Adv. 7(32), 19457–19463 (2017). https://doi.org/10.1039/c7ra01110e

    Article  CAS  Google Scholar 

  10. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 27(7), 565–575 (2019). https://doi.org/10.1002/pip.3171

    Article  Google Scholar 

  11. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  12. H.S. Kim et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012)

    Google Scholar 

  13. W. Ke et al., Perovskite solar cell with an efficient TiO2 compact film. ACS Appl. Mater. Interfaces 6(18), 15959–15965 (2014)

    Article  CAS  Google Scholar 

  14. T. Jiang et al., Power conversion efficiency enhancement of low-bandgap mixed Pb–Sn Perovskite solar cells by improved interfacial charge transfer. ACS Energy Lett. 4(7), 1784–1790 (2019). https://doi.org/10.1021/acsenergylett.9b00880

    Article  CAS  Google Scholar 

  15. D.G. Lee et al., Effect of TiO2 particle size and layer thickness on mesoscopic perovskite solar cells. Appl. Surf. Sci. 477, 131–136 (2019)

    Article  CAS  Google Scholar 

  16. M. Abulikemu, J. Barbé, A. El, J. Eid, S. Del, Planar heterojunction perovskite solar cell based on CdS electron transport layer. Thin Solid Flims 636, 512–518 (2017)

    Article  CAS  Google Scholar 

  17. Z. Gu et al., Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Sol. Energy Mater. Sol. Cells 140, 396–404 (2015). https://doi.org/10.1016/j.solmat.2015.04.015

    Article  CAS  Google Scholar 

  18. W. Liu et al., Simultaneously enhanced efficiency and stability of Perovskite solar cells with TiO2 @CdS core-shell nanorods electron transport layer. Adv. Mater. Interfaces 6(5), 1–8 (2019). https://doi.org/10.1002/admi.201801976

    Article  CAS  Google Scholar 

  19. W.A. Dunlap-Shohl, R. Younts, B. Gautam, K. Gundogdu, D.B. Mitzi, Effects of cd diffusion and doping in high-performance perovskite solar cells using CdS as electron transport layer. J. Phys. Chem. C 120(30), 16437–16445 (2016). https://doi.org/10.1021/acs.jpcc.6b05406

    Article  CAS  Google Scholar 

  20. I. Hwang, K. Yong, A novel CdS hole-blocking layer for photo-stable Perovskite solar cells a novel CdS hole-blocking layer for photo-stable perovskite solar cells. ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.5b12336

    Article  Google Scholar 

  21. J. Jia et al., Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chem. Commun. 54(25), 3170–3173 (2018). https://doi.org/10.1039/c7cc09838c

    Article  CAS  Google Scholar 

  22. C.D. Wessendorf, J. Hanisch, D. Müller, E. Ahlswede, CdS as electron transport layer for low-hysteresis Perovskite solar cells. RRL Solar (2018). https://doi.org/10.1002/solr.201800056

    Article  Google Scholar 

  23. H.S. Kim, N.G. Park, Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5(17), 2927–2934 (2014)

    Article  CAS  Google Scholar 

  24. S. Aharon, S. Gamliel, B. El. Cohen, L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16(22), 10512–10518 (2014)

    Article  CAS  Google Scholar 

  25. N.K. Elangovan, A. Sivaprakasam, Investigation of parameters affecting the performance of Perovskite solar cells. Mol. Cryst. Liq. Cryst. 710(1), 66–73 (2020). https://doi.org/10.1080/15421406.2020.1829425

    Article  CAS  Google Scholar 

  26. Y. Zhao, K. Zhu, Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar Cells. J. Phys. Chem. Lett. 4(17), 2880–2884 (2013)

    Article  CAS  Google Scholar 

  27. Y. Rong et al., Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. 10(11), 2383–2391 (2017)

    Article  CAS  Google Scholar 

  28. N.K. Elangovan, S. Arumugam, Chayaver: Indian-traditional dye to modern dye-sensitized solar cells. Mater. Res. Express 6(6), 066206 (2019)

    Article  CAS  Google Scholar 

  29. F. Haque et al., Effects of hydroiodic acid concentration on the properties of CsPbI3 Perovskite solar cells. ACS Omega 3(9), 11937–11944 (2018). https://doi.org/10.1021/acsomega.8b01589

    Article  CAS  Google Scholar 

  30. D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2(46), 19873–19881 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sivaprakasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprakasam, A., Elangovan, N.K. Effect of CdS thin film on the performance of methylammonium lead iodide perovskite solar cell. J Mater Sci: Mater Electron 32, 17612–17619 (2021). https://doi.org/10.1007/s10854-021-06294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06294-7

Navigation