Skip to main content
Log in

Synthesis and photoluminescence properties of a novel red-emitting Eu3+-doped LiSrGd(WO4)3 phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare-earth (RE)-doped tungstate LiSrGd1−x(WO4)3:xEu red-emitting phosphors were prepared by traditional high-temperature solid-state reaction method. These samples were characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence (PL). PL spectrum exhibited characteristic luminescent 5D0/7FJ (J = 0–4) intra-4f shell Eu3+ ion transitions. Eu3+-activated LiSrGd(WO4)3 phosphors could be excited by near-ultraviolet (NUV) light of 393 nm and blue light of 464 nm and showed excellent red emission lying around 616 nm (5D0 → 7F2). Eu3+-doped concentration in LiSrGd1−x(WO4)3:xEu was x = 0.3. Arising temperature to 393 K, the red emission intensity of LiSrGd1−x(WO4)3:xEu phosphor decayed by only 13.57 and 19.53 \(\%\) relative to room temperature, which indicates that the phosphor possesses good temperature stability. The evaluated Commission International de l’Eclairage (CIE) color coordinates of these phosphors were close to the standard red CIE color coordinate published by the National Television Systems Committee. Hence LiSrGd1−x(WO4)3:xEu phosphor is promising with potential for white LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.K. Yam, Z. Hassan, Innovative advances in LED technology. Microelectron. J. 36(2), 129–137 (2004)

    Article  Google Scholar 

  2. S. Pimputkar, J.S. Speck, S.P. DenBaars et al., Prospects for LED lighting. Nat. Photonics 3(4), 180–182 (2009)

    Article  CAS  Google Scholar 

  3. K. Zhang, H.Z. Liu, W.B. Hu, Advances in the study of phosphor for white LEDs. J. Mater. Rep. 9, 50–53 (2005)

    Google Scholar 

  4. J.C. Zang, Y. Qi, Y.X. Liu, Solid white lighting and rare earth luminescence materials. J. Mater. Rep. 7, 6–9 (2006)

    Google Scholar 

  5. Y.H. Wang, G. Zhu, S.Y. Xin, Q. Wang, Recent development in rare earth doped phosphors for white light emitting diodes. J. Rare Earths 33(01), 1–12 (2015)

    Article  Google Scholar 

  6. M.M. Haque, M. Kudrat-E-Zahan, N.A. Jahan et al., Eu3+-activated potential red-emitting phosphor for solid-state lighting. Optik Int. J. Light Electron Optics 133, 1–8 (2017)

    Article  CAS  Google Scholar 

  7. T. Komukai, Y. Sato, H. Kato, M. Kakihana, A high-luminescence BaZrSi3O9:Eu2+ blue-green-emitting phosphor: synthesis and mechanism. J. Lumin. 181, 211–216 (2017)

    Article  CAS  Google Scholar 

  8. Z. He, X. Huang, R. Zhou et al., Synthesis and luminescence properties of a new green emitting Ca2MgSi2O7-xNx:Eu2+ phosphor. J. Alloys Compd. 658, 36–40 (2016)

    Article  CAS  Google Scholar 

  9. X. Huang, H. Guo et al., Eu3+-activated Na2Gd(PO4)(MoO4): a novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes. J. Alloys Compd. 720, 29–38 (2017)

    Article  CAS  Google Scholar 

  10. G. Sivaramaiah, J.L. Rao et al., Investigation of new UV-emitting, Gd-activated Y4Zr3O12 phosphors prepared via combustion method. J. Lumin. Interdis. J. Res. Excit. State Process. Condens. Matter 57, 133–138 (2015)

    Google Scholar 

  11. P. Shi, Z. Xia, M.S. Molokeev et al., Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors. Dalton Trans 43(25), 69–76 (2014)

    Article  Google Scholar 

  12. S. Ekambaram, M. Maaza, Combustion synthesis and luminescent properties of Eu3+-activated cheap red phosphors. J. Alloys Compd. 395(1–2), 132–134 (2005)

    Article  CAS  Google Scholar 

  13. K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 45–51 (2015)

    Article  Google Scholar 

  14. D. Feng, C. Ke et al., Pyrethroids as promising marine antifoulants: laboratory and field studies. J. Chem. Phys. 77, 163–167 (2009)

    Google Scholar 

  15. Q. Liu, X. Li, B. Zhang et al., Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs. Ceram. Int. 134, 15294–15300 (2016)

    Article  Google Scholar 

  16. B. Han, Y. Dai, J. Zhang et al., Photoluminescence properties of a double perovskite tungstate based red-emitting phosphor NaLaMgWO6:Sm3+. Ceram. Int. 213, 3734–3740 (2017)

    Google Scholar 

  17. X. Zhaojie, Study on the Synthesis and Luminescence Properties of Tungstate and Titanium Phosphor (Guangdong University of Technology, Guangzhou, 2020).

    Google Scholar 

  18. D.L. Shruthi, A.J. Reddy, G. Kumar et al., Judd Ofelt theoretical analysis, luminescence and cathodoluminescence properties of Eu3+-activated LiGd(WO4)2 phosphors. J. Lumines. 222, 117–167 (2020)

    Article  Google Scholar 

  19. Q. Zhang, Q.Y. Zhu, Y. Tian, X.H. Feng, J.T. Sun, S.C. Lv, Luminescent properties of Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors prepared via co-precipitation method. J. Rare Earths 29(09), 815–821 (2011)

    Article  CAS  Google Scholar 

  20. Z. Liu, Q. Meng, H. Liu et al., Energy transfer and electron–phonon coupling properties in Gd2(WO4)3: Eu phosphor. Opt. Mater. 36(2), 384–389 (2013)

    Article  CAS  Google Scholar 

  21. Q. Zeng, P. He, M. Pang et al., Sr9R2−xEuxW4O24(R=Gd and Y) red phosphor for near-UV and blue InGaN-based white LEDs. Solid State Commun. 149(21), 880–883 (2009)

    Article  CAS  Google Scholar 

  22. G. Yan, Y. Chao, J. Pengfei et al., Synthesis, crystal structure of LiCaRE5(BO3)6(RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) and Eu3+ luminescence in LiCaRE5(BO3)6 (RE = Gd, Y, Lu). Solid State Chem. 293, 121821 (2021)

    Article  Google Scholar 

  23. X. Zhao, Y. Ding, Z. Li et al., An efficient charge compensated red phosphor Sr3WO6: K+, Eu3+ For white LEDs. J. Alloys Compd. 553, 221–224 (2013)

    Article  CAS  Google Scholar 

  24. S. Zitzer, F. Schleifenbaum, T. Schleid, Na2Y3Cl3(TeO3)4: synthesis, crystal structure and spectroscopic properties of the bulk material and its luminescent Eu3+-doped samples. ChemInform 69(2), 150–158 (2014)

    CAS  Google Scholar 

  25. H. Wang, Y. Li, Z. Ning et al., A novel red phosphor LixNa1-xEu(WO4)2 solid solution: influences of Li/Na ratio on the microstructures and luminescence properties. J. Lumines. S2, 56–61 (2018)

    Google Scholar 

  26. Y. Wang, X. Liu, P. Niu et al., Novel Gd2Mo4O15: Eu3+ red-emitting phosphor for UV, NUV and blue LED applications. J. Lumines. 184, 1–6 (2017)

    Article  CAS  Google Scholar 

  27. A. Kn, B. Xm, A. Pl et al., Synthesis and luminescence properties of apatite-type red-emitting Ba2La8(GeO4)6O2:Eu3+ phosphor-ScienceDirect. J. Rare Earths 257, 1431–1437 (2020)

    Google Scholar 

  28. S.P. Horvath, J. Wells, M.F. Reid et al., Electron paramagnetic resonance enhanced crystal field analysis for low point-group symmetry systems. J. Phys. Condens. Matter Inst. Phys. J. 31, 92–103 (2019)

    Google Scholar 

  29. Y.H. Chen, B. Liu, C.S. Shi et al., GdPO_4: “Gd-Eu” energy transfer in Eu3+ and GdBO3:Eu3+. J Chin Rare Earth Soc 04, 50–54 (2005)

    Google Scholar 

  30. H. Wu, J. Stuckelberger, D. Kang et al., Micro-photoluminescence studies of shallow boron diffusions below polysilicon passivating contacts. Sol. Energy Mater. Sol. Cells 22(7), 329–346 (2018)

    Google Scholar 

  31. M. Tsuta, S. Nakamura, A. Kato, Micronization of KSrPO4:Eu and KBaPO4:Eu phosphor particles for white light-emitting diodes by pulsed laser ablation in liquid. Opt. Laser Technol. 135, 106–125 (2021)

    Article  Google Scholar 

  32. I. Ayumi, A. Yuya, H. Ayaka et al., Multicolor upconversion luminescence of dye-coordinated Er3+ at the interface of Er2O3 and CaF2 nanoparticles. Sci. Technol. Adv. Mater. 20(1), 1876–1899 (2019)

    Google Scholar 

  33. X. Li, W. Cai, H. Guan et al., Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem. Eng. J. 41(9), 277–294 (2021)

    Google Scholar 

  34. T. Kunihiko, O. Shin, T. Harukazu et al., In vivo imaging of particle-induced inflammation and osteolysis in the calvariae of transgenic mice. J. Biomed. Biotechnol. 62(43), 197–215 (2010)

    Google Scholar 

  35. Y. Huang, L. Zhou, L. Yang et al., Self-assembled 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures: hydrothermal synthesis, formation mechanism and luminescence properties. Opt. Mater. 33(6), 777–782 (2011)

    Article  CAS  Google Scholar 

  36. W. Xie, H. Huang, J. Li et al., Controlling the energy transfer via multi luminescent centers to achieve white/tunable light in a single-phased Sc2O3:Bi3+, Eu3+ phosphor. Ceram. Int. S02(72), 88–112 (2018)

    Google Scholar 

  37. H. Yamamoto, S. Seki, J. Jean-Pierre et al., Thermal quenching of luminescence in a disordered compound: EuNa2Mg2 (VO4)3. J. Electrochem. Soc. 127(3), 694–701 (1980)

    Article  CAS  Google Scholar 

  38. W. Jun, Luminescence properties of LB films based on heteropolytungstate of rare earth. Mater. Sci. Eng. 97(1), 83–86 (2003)

    Article  Google Scholar 

  39. Y. Luo, Y. Liu, C. Wang et al., Near-infrared anti-Stokes luminescence from neodymium doped perovskite calcium titanate particles for optical temperature sensors. Sens. Actuators A 3(26), 904–922 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51572195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xusheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, K., Ye, H., Wang, X. et al. Synthesis and photoluminescence properties of a novel red-emitting Eu3+-doped LiSrGd(WO4)3 phosphors. J Mater Sci: Mater Electron 32, 17170–17181 (2021). https://doi.org/10.1007/s10854-021-06176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06176-y

Navigation