Skip to main content

Advertisement

Log in

Assessment of shock wave resistance on brookite TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As per the current trend in science and technology, the present strategic sectors which are focusing on the development of novel materials are continually relying very strongly on the materials science researchers who are in the forefront to fulfill the industrial requirements and expectations in terms of efficiency and stability for the materials. Based on their requirements, dissipation of the energy storage is one of the primary necessities rather than to increase the capacity of energy storage. Hence, it is imperative to find the potential materials to fulfill the requirements so that the journey of this search is still an ongoing process. The present investigation deals with the measurement of the ability of shock wave resistance for brookite TiO2 at dynamic shock wave-loaded conditions by utilizing diffraction and spectroscopic methods. Based on the assessments of the above-mentioned techniques, brookite phase remained stable even at 300 shocks indicating that the brookite phase is a highly stable phase, and it could be noted that anatase TiO2 has undergone rutile phase at shocked conditions. Hence, brookite TiO2 is considered as a high shock-resistant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.L. Chinke, I.S. Sandhu, D.R. Saroha, P.S. Alegaonkar, Graphene-like nanoflakes for shock absorption applications. ACS Appl. Nano Mater. 1, 6027–6037 (2018)

    Article  CAS  Google Scholar 

  2. Feng Bai, Kaifu Bian, Xin Huang, Zhongwu Wang, and Hongyou Fan; Pressure Induced Nanoparticle Phase Behavior, Property, and Applications. Chem. Rev. 119, 7673−7717 (2019)

  3. N.K. Gopinath, G. Jagadeesh, B. Basu, Shock wave-material interaction in ZrB2–SiC based ultra high temperature ceramics for hypersonic applications. J. Am. Ceram. Soc. 00, 1–14 (2019)

    Google Scholar 

  4. A. Sivakumar, S. Sahaya Jude Dhas, S.A. Martin Britto Dhas; Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions. Sol.State.Sci (2020) https://doi.org/10.1016/j.solidstatesciences.2020.106340

  5. V. Mowlika, A.Sivakumar, S.A.Martin Britto Dhas, C. S.Naveen, A.R.Phani, R.Robert; Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J.Nanostrct.Chem (2020) https://doi.org/10.1007/s40097-020-00342-0

  6. A. Sivakumar, S. Suresh, S. Balachandar, J. Thirupathy, J. Kalyana Sundar, S.A. Martin Britto Dhas; Effect of shock waves on thermophysical properties of ADP and KDP crystals. Optic.Laser. Tech 111, 284–289 (2019)

  7. Q. Li, H. Zhang, B. Cheng, R. Liu, Bo. Liu, J. Liu, Z. Chen, Bo. Zou, T. Cui, and Bingbing Liu; Pressure-induced amorphization in orthorhombic Ta2O5: An intrinsic character of crystal. J. Appl. Phys 115, 193512 (2014)

    Article  Google Scholar 

  8. T.D. Bennett, P. Simoncic, S.A. Moggach, F. Gozzo, P. Macchi, D.A. Keen, J.-C. Tan, A.K. Cheetham, Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011)

    Article  CAS  Google Scholar 

  9. A. Sivakumar and S. A. Martin Britto Dhas; Shock-wave-induced nucleation leading to crystallization in water. J. Appl. Cryst. 52, 1016–1021 (2019)

  10. M. Eskandari, M.A. Mohtadi-Bonab, M. Yeganeha, J.A. Szpunard, A.G. Odeshi, High-strain-rate deformation behaviour of new high-Mn austenitic steel during impact shock-loading. Mater. Sci. Tech 35, 77–88 (2018)

    Article  Google Scholar 

  11. P. Renganathan, Y.M. Gupta, Shock compression/release of magnesium single crystals along a low-symmetry orientation: Role of basal slip. J. Appl. Phys. 126, 115902 (2019)

    Article  Google Scholar 

  12. C.S. Akshay Datey, A. Thaha, S.R. Patil, J. Gopalan, D. Chakravortty, Enhancing the efficiency of desensitizing agents with shockwave treatment – a new paradigm in dentinal hypersensitivity management. RSC Adv 6, 68973 (2016)

    Article  Google Scholar 

  13. J. Vishakantaiah, K.P.J. Reddy, Catalytic effect of CeO2-stabilized ZrO2 ceramics with strong shock-heated mono- and di-atomic gases. J. Am. Ceram. Soc. 99, 4128–4136 (2016)

    Article  CAS  Google Scholar 

  14. S.C. Gupta, S.K. , Sikka; Some investigations on shock wave induced phase transitions. ShockWaves 6, 345–359 (1996)

    Google Scholar 

  15. Rohan Abeyaratne, James K. Knowles (2000) On a shock-induced martensitic phase transition. J.Appl.Phys 87, 1123–1124

  16. D. Machon, F. Meersman, M.C. Wilding, M. Wilson, P.F. McMillan, Pressure-induced amorphization and polyamorphism: Inorganic and biochemical systems. Prog. Mater. Sci 61, 216–282 (2014)

    Article  CAS  Google Scholar 

  17. A. Rita, A. Sivakumar, S. A. Martin Britto Dhas; Infuence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J.Nanostrc.Chem. 9, 225–230 (2019)

  18. A. Rita, A. Sivakumar, S. A. Martin Britto Dhas; Investigation of Structural and Magnetic Phase Behaviour of Nickel Oxide Nanoparticles under Shock Wave Recovery Experiment. J Supercond Nov Magn (2020) https://doi.org/10.1007/s10948-020-05435-z

  19. A. Sivakumar, C. Victor, M. Muralidhr Nayak, S.A. Martin Britto Dhas, Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions. Mater. Res. Express 6, 045031 (2019)

    Article  Google Scholar 

  20. S. Kalaiarasi, A. Sivakumar, S.A. Martin Britto Dhas, M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett 219, 72–75 (2018)

    Article  CAS  Google Scholar 

  21. A. Sivakumar, S. Soundarya, S. Sahaya Jude Dhas, K. Kamala Bharathi, and S.A. Martin Britto Dhas, Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J. Phys. Chem. C 124, 10755–10763 (2020)

    Article  CAS  Google Scholar 

  22. A. Rita, A. Sivakumar, M. Jose, S.A. Martin Britto Dhas, Shock wave recovery studies on structural and magnetic properties of α—Fe2O3 NPs. Mater. Res. Express 6, 095035 (2019)

    Article  CAS  Google Scholar 

  23. X. Wang, Z. Li, J. Shi, Yu. Yanhao, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev 114, 9346–9384 (2014)

    Article  CAS  Google Scholar 

  24. M.T. Noma, M.A. Ashraf, A. Ali, Synthesis and applications of nano-TiO2: a review. Environ. Sci. Pollut. Res 26, 3262–3291 (2019)

    Article  Google Scholar 

  25. S. Kalaiarasi, S.A. Martin Britto Dhas, M. Jose, S. Jerome Das, Thermo analytical study of phase transformation of TiO2 nanoparticles prepared using mono and di α- hydroxy acid watersoluble precursor by hydrothermal technique. Phase. Trans 93, 1–12 (2020)

    Article  Google Scholar 

  26. Q. Li, R. Liu, T. Wang, Xu. Ke, Q. Dong, Bo. Liu, J. Liu, and Bingbing Liu; High pressure synthesis of amorphous TiO2 nanotubes. AIP Adv 5, 097128 (2015)

    Article  Google Scholar 

  27. Q. Li, R. Liu, B. Liu, L. Wang, K. Wang, D. Li, Bo. Zou, T. Cui, J. Liu, Zhiqiang Chenc and Ke Yang; Stability and phase transition of nanoporous rutile TiO2 under high pressure. RSC Adv 2, 9052–9057 (2012)

    Article  CAS  Google Scholar 

  28. Tong Zhu and Shang-Peng Gao; The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs. J. Phys. Chem. C 118, 11385−11396 (2014)

  29. R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P.D. Cozzoli, Nonhydrolytic Synthesis of High- Quality Anisotropically Shaped Brookite TiO2 Nanocrystals. J. Am. Chem. Soc. 130, 11223–11233 (2008)

    Article  CAS  Google Scholar 

  30. H. Lin, L. Li, M. Zhao, X. Huang, X. Chen, G. Li, Yu. Richeng, Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J. Am. Chem. Soc 134, 8328–8331 (2012)

    Article  CAS  Google Scholar 

  31. Z. Yanqing, S. Erwei, C. Suxian, Li. Wenjun, Hu Xingfang; Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites. J. Mater. Sci. Lett 19, 1445–1448 (2000)

    Article  CAS  Google Scholar 

  32. W. Liu, J. Chen, X. Zhang, J. Yan, M. Hou, M. Kunz, D. Zhang, H. Zhang, Pressure-induced phase transitions of natural brookite. ACS Earth Space Chem. 3, 844–853 (2019)

    Article  CAS  Google Scholar 

  33. W. Luo, S.F. Yang, Z.C. Wang, Y. Wang, R. Ahuja, B. Johanssonb, J. Liu, G.T. Zou, Structural phase transitions in brookite-type TiO2 under high pressure. Solid State. Com 133, 49–53 (2005)

    Article  CAS  Google Scholar 

  34. X. Gao, J. Liu, Pengwan Chen; Nitrogen-doped titania photocatalysts induced by shock wave. Mater. Res. Bull 44, 1842–1845 (2009)

    Article  CAS  Google Scholar 

  35. J.C. Jackson, J. Wright Horton, Jr., I.-M. Chou, H.E. Belkina, Shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, USA. Amer. Min 91, 604–608 (2006)

    Article  CAS  Google Scholar 

  36. V. Jayaram, P. Singh, K.P.J. Reddy, Study of anatase TiO2 in the presence of N2 under shock dynamic loading in a free piston driven shock tube. Adv. Ceram. Sci. Eng 2, 40–46 (2013)

    Google Scholar 

  37. J. Liua, Yu. Yingchun, H. He, X. Jin, Kang Xu; Photocatalytic activity of shock-treated TiO2 powder. Mater. Res. Bull 35, 377–382 (2000)

    Article  Google Scholar 

  38. Xu. Yangsen, H. Lin, L. Li, X. Huang, G. Li, Precursor-directed synthesis of well-facetted brookite TiO2 single crystals for efficient photocatalytic performances. J. Mater. Chem. A 3, 22361–22368 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Department of Science and Technology (DST), India for funding through DST-FIST progarmme (SR/FST/College-2017/130 (c)) and Abraham Panampara Research Fellowship.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no RG-1440-071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Kalaiarasi, S., Dhas, S.S.J. et al. Assessment of shock wave resistance on brookite TiO2. J Mater Sci: Mater Electron 32, 15134–15142 (2021). https://doi.org/10.1007/s10854-021-06063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06063-6

Navigation