Skip to main content
Log in

Highly stable visible‐light photocatalytic properties of black rutile TiO2 hydrogenated in ultrafast flow

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hydrogenation and introducing oxygen vacancies (VO) can lead to surface lattice disorder in TiO2, which is a new form of TiO2 named black TiO2, with excellent visible-light photocatalytic activity, but this TiO2 is easy to failure because oxidation makes the concentration of surface VO decrease rapidly in a short time. In this work, black TiO2 nanoparticles with VO almost concentrated inside nanoparticles were fabricated under ultrafast hydrogen flow. These bulk VO shortened the bandgaps of black TiO2, enhanced its visible light absorption, and meanwhile provided extremely strong stability. The location of VO in black TiO2 was evident from EPR, XPS with HRTEM investigation, and other characteristics of black TiO2 were obtained by XRD, UV-Vis, SEM, PL, and photocurrent techniques. The degradation experiments on Cr6+ or rhodamine B demonstrated the good visible-light photocatalytic performance of our material. After 18 months of natural aging treatment (in the air), our samples showed no discoloration and maintained 89.5% photocatalytic efficiency, and further study exhibited that this black TiO2 also contained excellent acid resistance and moderate alkaline resistance. This work could help design lattice disorder to obtain more stable and practical black TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The source of the chemical, the process of the experiment, the handling of the data, etc., are transparent.

Code availability

The software application used in this work was also available on other computers.

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. M. Altomare, M. Pozzi, M. Allieta, L.G. Bettini, E. Selli, H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity. Appl. Catal. B-Environ. 136–137, 81–88 (2013)

    Article  Google Scholar 

  3. F. Xu, Y. Le, B. Cheng, C. Jiang, Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature. Appl. Surf. Sci. 426, 333–341 (2017)

    Article  CAS  Google Scholar 

  4. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013)

    Article  CAS  Google Scholar 

  5. N.K. Allam, M.A. El-Sayed, Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: structural and optical properties. J. Phys. Chem. C 114, 12024–12029 (2010)

    Article  CAS  Google Scholar 

  6. L. Jiang, Z. Luo, Y. Li, W. Wang, J. Li, J. Li, Y. Ao, J. He, V.K. Sharma, J. Wang, Morphology- and phase-controlled synthesis of visible-light-activated S-doped TiO2 with tunable S4+/S6+ ratio. Chem. Eng. J. 402, 125549 (2020)

    Article  CAS  Google Scholar 

  7. C.O. Amor, K. Elghniji, E. Elaloui, Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid. J. Mater. Sci.: Mater. Electron. 31, 20919–20931 (2020)

    Google Scholar 

  8. X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. Wang, Y. He, Y. Zheng, Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties. Appl. Catal. B-Environ. 168–169, 408–415 (2015)

    Article  Google Scholar 

  9. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  10. N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E. Spiecker, P. Schmuki, Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett. 14, 3309–3313 (2014)

    Article  CAS  Google Scholar 

  11. Z. Tian, H. Cui, G. Zhu, W. Zhao, J. Xu, F. Shao, J. He, F. Huang, Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. J. Power Sources 325, 697–705 (2016)

    Article  CAS  Google Scholar 

  12. K. Carlson, C. Elliott, S. Walker, M. Misra, S. Mohanty, An effective, point-of-use water disinfection device using immobilized black TiO2 nanotubes as an electrocatalyst. J. Electrochem. Soc. 163, H395–H401 (2016)

    Article  CAS  Google Scholar 

  13. T. Jedsukontorn, T. Ueno, N. Saito, M. Hunsom, Facile preparation of defective black TiO2 through the solution plasma process: effect of parametric changes for plasma discharge on its structural and optical properties. J. Alloy. Compd. 726, 567–577 (2017)

    Article  CAS  Google Scholar 

  14. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007–3014 (2013)

    Article  CAS  Google Scholar 

  15. H. Choi, S.I. Moon, T. Song, S. Kim, Hydrogen-free defects in hydrogenated black TiO2. Phys. Chem. Chem. Phys. 20, 19871–19876 (2018)

    Article  CAS  Google Scholar 

  16. L.B. Mo, Y. Bai, Q.Y. Xiang, Q. Li, J.O. Wang, K. Ibrahim, J.L. Cao, Band gap engineering of TiO2 through hydrogenation. Appl. Phys. Lett. 105, 202114 (2014)

    Article  Google Scholar 

  17. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V.D. Santo, Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012)

    Article  CAS  Google Scholar 

  18. F. Teng, M. Li, C. Gao, G. Zhang, P. Zhang, Y. Wang, L. Chen, E. Xie, Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl. Catal. B-Environ. 148–149, 339–343 (2014)

    Article  Google Scholar 

  19. S. Selcuk, X. Zhao, A. Selloni, Structural evolution of titanium dioxide during reduction in high-pressure hydrogen. Nat. Mater. 17, 923–928 (2018)

    Article  CAS  Google Scholar 

  20. P. Deák, J. Kullgren, T. Frauenheim, Polarons and oxygen vacancies at the surface of anatase TiO2. Phys. Status Solidi-Rapid Res. Lett. 8, 583–586 (2014)

    Article  Google Scholar 

  21. X. Yuan, X. Wang, X. Liu, H. Ge, G. Yin, C. Dong, F. Huang, Ti3+-promoted high oxygen-reduction activity of Pd nanodots supported by black titania nanobelts. ACS Appl. Mater. Interfaces 8, 27654–27660 (2016)

    Article  CAS  Google Scholar 

  22. R. Katal, M. Salehi, M.H.D.A. Farahani, S. Masudy-Panah, S.L. Ong, J. Hu, Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis. ACS Appl. Mater. Interfaces 10, 35316–35326 (2018)

    Article  CAS  Google Scholar 

  23. K. Lan, R. Wang, Q. Wei, Y. Wang, A. Hong, P. Feng, D. Zhao, Stable Ti3+ defects in oriented mesoporous titania frameworks for efficient photocatalysis. Angew. Chem. Int. Ed. 59, 17676–17683 (2020)

    Article  CAS  Google Scholar 

  24. J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B-Environ. 206, 300–307 (2017)

    Article  CAS  Google Scholar 

  25. D.V. Zyabkin, H.P. Gunnlaugsson, J.N. Goncalves, K. Bharuth-Ram, B. Qi, I. Unzueta, D. Naidoo, R. Mantovan, H. Masenda, S. Ólafsson, G. Peters, J. Schell, U. Vetter, A. Dimitrova, S. Krischok, P. Schaaf, Experimental and theoretical study of electronic and hyperfine properties of hydrogenated anatase (TiO2): defect interplay and thermal stability. J. Phys. Chem. C 124, 7511–7522 (2020)

    Article  CAS  Google Scholar 

  26. E. Ioannidou, A. Ioannidi, Z. Frontistis, M. Antonopoulou, C. Tselios, D. Tsikritzis, I. Konstantinou, S. Kennou, D.I. Kondarides, D. Mantzavinos, Correlating the properties of hydrogenated titania to reaction kinetics and mechanism for the photocatalytic degradation of bisphenol A under solar irradiation. Appl. Catal. B-Environ. 188, 65–76 (2016)

    Article  CAS  Google Scholar 

  27. J. Mao, X. An, Z. Gu, J. Zhou, H. Liu, J. Qu, Visualizing the interfacial charge transfer between photoactive microcystis aeruginosa and hydrogenated TiO2. Environ. Sci. Technol. 54, 10323–10332 (2020)

    Article  CAS  Google Scholar 

  28. W. Lin, H. Cheng, Q. Wu, C. Zhang, M. Arai, F. Zhao, Selective N–methylation of N–methylaniline with CO2 and H2 over TiO2–supported PdZn catalyst. ACS Catal. 10, 3285–3296 (2020)

    Article  CAS  Google Scholar 

  29. O. Warschkow, Y. Wang, A. Subramanian, M. Asta, L.D. Marks, Structure and local-equilibrium thermodynamics of the c (2 × 2) reconstruction of rutile TiO2 (100). Phys. Rev. Lett. 100, 086102 (2008)

    Article  CAS  Google Scholar 

  30. K.T. Park, M.H. Pan, V. Meunier, E.W. Plummer, Surface reconstructions of TiO2(110) driven by suboxides. Phys. Rev. Lett. 96, 226105 (2006)

    Article  CAS  Google Scholar 

  31. J. Singh, A.K. Manna, R.K. Soni, Bifunctional Au–TiO2 thin films with enhanced photocatalytic activity and SERS based multiplexed detection of organic pollutant. J. Mater. Sci.: Mater. Electron. 30, 16478–16493 (2019)

    CAS  Google Scholar 

  32. Y.X. Li, X. Wang, C.C. Wang, H. Fu, Y. Liu, P. Wang, C. Zhao, S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr (VI) reduction and bisphenol A degradation under LED visible light. J. Hazard. Mater. 399, 123085 (2020)

    Article  CAS  Google Scholar 

  33. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  Google Scholar 

  34. M. Harb, P. Sautet, E. Nurlaela, P. Raybaud, L. Cavallo, K. Domen, J.M. Basset, K. Takanabe, Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint. Phys. Chem. Chem. Phys. 16, 20548–20560 (2014)

    Article  CAS  Google Scholar 

  35. N. Liu, H.G. Steinrück, A. Osvet, Y. Yang, P. Schmuki, Noble metal free photocatalytic H2 generation on black TiO2: on the influence of crystal facets vs. crystal damage. Appl. Phys. Lett. 110, 072102 (2017)

    Article  Google Scholar 

  36. J. Zhang, P. Liu, Z. Lu, G. Xu, X. Wang, L. Qian, H. Wang, E. Zhang, J. Xi, Z. Ji, One-step synthesis of rutile nano-TiO2 with exposed {1 1 1} facets for high photocatalytic activity. J. Alloy. Compd. 632, 133–139 (2015)

    Article  CAS  Google Scholar 

  37. H. Zhang, Y. Zhang, J. Yin, Z. Li, Q. Zhu, Z. Xing, In-situ N-doped mesoporous black TiO2 with enhanced visible-light-driven photocatalytic performance. Chem. Phys. 513, 86–93 (2018)

    Article  CAS  Google Scholar 

  38. X. Chen, D. Zhao, K. Liu, C. Wang, L. Liu, B. Li, Z. Zhang, D. Shen, Laser-modified black titanium oxide nanospheres and their photocatalytic activities under visible light. ACS Appl. Mater. Interfaces 7, 16070–16077 (2015)

    Article  CAS  Google Scholar 

  39. H. Li, Z. Chen, C.K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, B. Pan, Y.Y. Li, Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2, 229–236 (2014)

    Article  CAS  Google Scholar 

  40. S. Shao, J. Yu, J.B. Love, X. Fan, An economic approach to produce iron doped TiO2 nanorods from ilmenite for photocatalytic applications. J. Alloy. Compd. 858, 158388 (2021)

    Article  CAS  Google Scholar 

  41. M. Mondal, H. Dutta, S.K. Pradhan, Enhanced photocatalysis performance of mechano-synthesized V2O5–TiO2 nanocomposite for wastewater treatment: correlation of structure with photocatalytic performance. Mater. Chem. Phys. 248, 122947 (2020)

    Article  CAS  Google Scholar 

  42. J. Singh, S. Juneja, R.K. Soni, J. Bhattacharya, Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO-Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J. Colloid Interface Sci. 590, 60–71 (2021)

    Article  CAS  Google Scholar 

  43. J. Singh, S. Palsaniya, R.K. Soni, Mesoporous dark brown TiO2 spheres for pollutant removal and energy storage applications. Appl. Surf. Sci. 527, 146796 (2020)

    Article  CAS  Google Scholar 

  44. J. Singh, R.K. Soni, Two-dimensional MoS2 nanosheet-modified oxygen defect-rich TiO2 nanoparticles for light emission and photocatalytic applications. New J. Chem. 44, 14936–14946 (2020)

    Article  CAS  Google Scholar 

  45. X. Deng, H. Zhang, R. Guo, X. Cheng, Q. Cheng, Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties. Appl. Surf. Sci. 441, 420–428 (2018)

    Article  CAS  Google Scholar 

  46. S. Wu, X. Li, Y. Tian, Y. Lin, Y.H. Hu, Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem. Eng. J. 406, 126747 (2021)

    Article  CAS  Google Scholar 

  47. J. Chen, Y. Fu, F. Sun, Z. Hu, X. Wang, T. Zhang, F. Zhang, X. Wu, H. Chen, G. Cheng, R. Zheng, Oxygen vacancies and phase tuning of self-supported black TiO2 – X nanotube arrays for enhanced sodium storage. Chem. Eng. J. 400, 125784 (2020)

    Article  CAS  Google Scholar 

  48. J.P. Fitts, M.L. Machesky, D.J. Wesolowski, X. Shang, J.D. Kubicki, G.W. Flynn, T.F. Heinz, K.B. Eisenthal, Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2 (110) interface. Chem. Phys. Lett. 411, 399–403 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61771327), NSFC (Nos. U1730138 and U1930123), Science and Technology Project of Sichuan Province (19ZDYF2180), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanxia Huang or Qiwu Shi.

Ethics declarations

Conflict of interest

There is no conflict of interest or competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhang, J., Huang, W. et al. Highly stable visible‐light photocatalytic properties of black rutile TiO2 hydrogenated in ultrafast flow. J Mater Sci: Mater Electron 32, 14665–14676 (2021). https://doi.org/10.1007/s10854-021-06024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06024-z

Navigation