Skip to main content

Advertisement

Log in

Preparation of cerium oxide–MWCNTs nanocomposite bulk modified carbon ceramic electrode: a sensitive sensor for tamoxifen determination in human serum samples

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, cerium oxide and multi-walled carbon nanotubes nanocomposite were incorporated into the carbon ceramic electrode (CeO2–MWCNTs/CCE) as a renewable electrode for the electrocatalytic purposes. To demonstrate capability of the fabricated electrode, determination of tamoxifen as an important anticancer drug with differential pulse voltammetry technique was evaluated in details. Linear range, limit of detection and sensitivity of the developed sensor were found to be 0.2–40 nM, 0.132 nM and 1.478 µA nM−1 cm−2, respectively. Ease of production, low cost and high electron transfer rate of the CeO2–MWCNTs/CCE promises it as a novel electro-analytical tool for determination of important species in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. G. Yang, S. Nowsheen, K. Aziz, A.G. Georgakilas, Pharmacol. Ther. 139, 392–404 (2013)

    Article  CAS  Google Scholar 

  2. H. Sereshti, S. Bakhtiari, H. Najarzadekan, S. Samadi, J. Sep. Sci. 40, 3383–3391 (2017)

    Article  CAS  Google Scholar 

  3. L.Y. Thang, H.H. See, J.P. Quirino, Electrophoresis 37, 1166–1169 (2016)

    Article  CAS  Google Scholar 

  4. M.V. Antunes, S. Raymundo, V. de Oliveira, D.E. Staudt, G. Gössling, G.P. Peteffi, J.V. Biazús, J.A. Cavalheiro, M. Tre-Hardy, A. Capron, V. Haufroid, P. Wallemacq, G. Schwartsmann, R. Linden, Talanta 132, 775–784 (2015)

    Article  CAS  Google Scholar 

  5. S.F. Teunissen, H. Rosing, A.H. Schinkel, J.H.M. Schellens, J.H. Beijnen, Anal. Chim. Acta 683, 21–37 (2010)

    Article  CAS  Google Scholar 

  6. F.P. Gomes, P.L. Garcia, Talanta 101, 495–503 (2012)

    Article  CAS  Google Scholar 

  7. P. Daneshgar, P. Norouzi, M.R. Ganjali, H.A. Zamani, Talanta 77, 1075–1080 (2009)

    Article  CAS  Google Scholar 

  8. C.S.P. Sastry, J.S.V.M.L. Rao, K.R. Rao, Talanta 42, 1479–1485 (1995)

    Article  CAS  Google Scholar 

  9. E. Hosseinzadeh, H. Ravan, A. Mohammadi, H. Pourghadamyari, Talanta 216, 120913 (2020)

    Article  CAS  Google Scholar 

  10. H. Ravan, A. Norouzi, N. Sanadgol, E. Hosseinzadeh, Microchim. Acta 187, 392 (2020)

    Article  CAS  Google Scholar 

  11. Y. Zhai, S. Zhang, H. Pang, Mater. Lett. 61, 1863–1866 (2007)

    Article  CAS  Google Scholar 

  12. P. Borker, A. Salker, Mater. Chem. Phys. 103, 366–370 (2007)

    Article  CAS  Google Scholar 

  13. A. Xie, F. Tao, T. Li, L. Wang, S. Chen, S. Luo, C. Yao, Electrochim. Acta 261, 314–322 (2018)

    Article  CAS  Google Scholar 

  14. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. 16, 84 (2018)

    Article  CAS  Google Scholar 

  15. J.-D. Qiu, S.-G. Cui, R.-P. Liang, Microchim. Acta 171, 333–339 (2010)

    Article  CAS  Google Scholar 

  16. C. Li, N. Sun, J. Ni, J. Wang, H. Chu, H. Zhou, M. Li, Y. Li, J. Solid State Chem. 181, 2620–2625 (2008)

    Article  CAS  Google Scholar 

  17. J. Wei, J. Ding, X. Zhang, D. Wu, Z. Wang, J. Luo, K. Wang, Mater. Lett. 59, 322–325 (2005)

    Article  CAS  Google Scholar 

  18. D. Zhang, T. Yan, L. Shi, C. Pan, J. Zhang, Appl. Surf. Sci. 255, 5789–5794 (2009)

    Article  CAS  Google Scholar 

  19. Z. Sun, X. Zhang, B. Han, Y. Wu, G. An, Z. Liu, S. Miao, Z. Miao, Carbon 45, 2589–2596 (2007)

    Article  CAS  Google Scholar 

  20. Y. Li, J. Ding, J. Chen, C. Xu, B. Wei, J. Liang, D. Wu, Mater. Res. Bull. 37, 313–318 (2002)

    Article  CAS  Google Scholar 

  21. S. Harikrishna, A.R. Robert, H. Ganja, S. Maddila, S.B. Jonnalagadda, Appl. Organomet. Chem. 34, e5796 (2020)

    Article  CAS  Google Scholar 

  22. C. Liu, L. Zhang, L. Sun, W. Wang, Z. Chen, Int. J. Hydrog. Energy 45, 8558–8567 (2020)

    Article  CAS  Google Scholar 

  23. D. Parimi, V. Sundararajan, O. Sadak, S. Gunasekaran, S.S. Mohideen, A. Sundaramurthy, ACS Omega 4, 104–113 (2019)

    Article  CAS  Google Scholar 

  24. A. Awadallah-F, S. Al-Muhtaseb, Sci. Rep. 10, 4878 (2020)

    Article  CAS  Google Scholar 

  25. T.R.L.C. Paixão, ChemElectroChem 7, 3414–3415 (2020)

    Article  Google Scholar 

  26. Y.I. Kuzin, P.L. Padnya, I.I. Stoikov, V.V. Gorbatchuk, D.I. Stoikov, A.I. Khadieva, G.A. Evtugyn, Electrochim. Acta 345, 136195 (2020)

    Article  CAS  Google Scholar 

  27. R. Jain, Vikas K. R, Drug Test Anal. 3, 743–747 (2011)

    Article  CAS  Google Scholar 

  28. X.-X. Guo, Z.-J. Song, X.-J. Tian, J.-F. Song, Anal. Lett. 41, 1225–1235 (2008)

    Article  CAS  Google Scholar 

  29. H.M. Moghaddam, H. Beitollahi, G. Dehghannoudeh, H. Forootanfar, J. Electrochem. Soc. 164, B372–B376 (2017)

    Article  CAS  Google Scholar 

  30. G.S. Kanberoglu, F. Coldur, C. Topcu, O. Cubuk, IEEE Sens. J. 15, 6199–6207 (2015)

    Article  CAS  Google Scholar 

  31. E.A. Khudaish, Microchem. J 152, 104327 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Sirjan School of Medical Sciences and Research Council of Azarbaijan Shahid Madani University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elyas Hosseinzadeh or Rahim Mohammad-Rezaei.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb) XRD pattern of CeO2–MWCNT/CCE

10854_2021_6019_MOESM2_ESM.docx

Supplementary file2 (DOCX 160 kb) A CVs of bare-CCE in 0.01 M [Fe(CN)6]3− at 0.1 M acetate buffer solution in different scan rates of 10, 25, 50, 75, 100, 150, 200, 250, 300, 400 and 500 mV s−1, and B change of peak currents vs. square root of scan rate

10854_2021_6019_MOESM3_ESM.docx

Supplementary file3 (DOCX 142 kb) A CVs of CeO2–MWCNT/CCE in 0.01 M [Fe(CN)6]3− at 0.1 M acetate buffer solution in different scan rates of 10, 25, 50, 75, 100, 150, 200, 250, 300, 400 and 500 mV s−1, and B change of peak currents vs. square root of scan rate

10854_2021_6019_MOESM4_ESM.docx

Supplementary file4 (DOCX 67 kb) A CVs of CeO2–MWCNT/CCE in the presence of TAM with different concentrations of 4.5, 5, 5.5, 6, 6.5, 7, 7.5 and 8 µM. B The corresponding calibration curve

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafaei, S., Hosseinzadeh, E., Kanberoglu, G.S. et al. Preparation of cerium oxide–MWCNTs nanocomposite bulk modified carbon ceramic electrode: a sensitive sensor for tamoxifen determination in human serum samples. J Mater Sci: Mater Electron 32, 14601–14609 (2021). https://doi.org/10.1007/s10854-021-06019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06019-w

Navigation