Skip to main content
Log in

Structural analytical and electrical conduction mechanisms of 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine nanostructure films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The 2,7,12,17-tetra-tert-butyl 5,10,15,20-tetraaza-21,23H-porphine (TTBTP) films were prepared using thermal evaporation technique. The X-ray diffraction (XRD) of the powder showed that TTBTP is polycrystalline with a tetragonal system. Also, the analysis of XRD pattern shows that the TTBTP film of thickness 55 nm has a crystallite size of 24.69 nm which tends to increase with the film thickness. By SEM of 177 nm thick TTBTP film, the topography of the surface is characterized by significant spherical granules. The mean diameter was estimated to be 250 nm for the spherical granules. It was observed that the conductivity increases with increasing the film thickness. Also, the TTBTP is a semiconductor film with thermally activated conduction mechanisms. The current–density–voltage (JV) characteristics showed Ohmic drives in low voltage, whereas the space charge limited conductivity mechanism is familiar in the high voltage region. The carrier mobility values of TTBTP film are relatively the same for other organic molecules. The 50 nm TTBTP film has a carrier mobility of 1.48 × 10− 9 cm2 V− 1 s− 1, which increases with increasing the film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.I. Maissel, R. Glang, Handbook of Thin Film Technology (McGrawHill, New York, 1980).

    Google Scholar 

  2. M. Ohring, The Material Science of Thin Films (Academic Press, San Diego, 1992).

    Google Scholar 

  3. Z.-R. Jia, Z.-G. Gao, Y.-H. Di Lan, G.-L. Cheng, Wu, H.-J. Wu, Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin. Phys. B 27, 117806 (2018)

    Article  Google Scholar 

  4. S. Chen, G. Meng, B. Kong, B. Xiao, Z. Wang, Z. Jing, Y. Gao, G. Wu, H. Wang, Y. Cheng, Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature cross-linked polymer capacitor. Chem. Eng. J. 387, 123662 (2020)

    Article  CAS  Google Scholar 

  5. K. Yiqun Wang, G. Kou, A. Wu, Feng, L. Zhuo, The effect of bis allyl benzoxazine on the thermal, mechanical and dielectric properties of bismaleimide-cyanate blend polymers. RSC Adv. 5, 58821–58831 (2015)

    Article  Google Scholar 

  6. K. Yiqun Wang, G. Kou, L. Wu, J. Zhuo, Yu Li, Zhang, The curing reaction of benzoxazine with bismaleimide/cyanate ester resin and the properties of the terpolymer. Polymer 77, 354–360 (2015)

    Article  Google Scholar 

  7. L.B. Freund, S. Suresh, Thin Film Materials (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  8. D. Smith, Thin Film Deposition: Principles and Practice (McGrawHill, New York, 1995).

    Google Scholar 

  9. D. Ji, T. Li, H. Fuchs, Patterning and applications of nanoporous structures in organic electronics. Nano Today 31, 100843 (2020)

    Article  CAS  Google Scholar 

  10. N.A. Azarova, J.W. Owen, C.A. McLellan, M.A. Grimminger, E.K. Chapman, J.E. Anthony, O.D. Jurchescu, Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Org. Electron. 11, 1960–1965 (2010)

    Article  CAS  Google Scholar 

  11. V. Chaudhary, N. Kumar, A.K. Singh, Solubility dependent trap density in poly (3-hexylthiophene) organic Schottky diodes at room temperature. Synth. Met. 250, 88–93 (2019)

    Article  CAS  Google Scholar 

  12. Y. Xia, X. Xu, O. Inganäs, Photovoltage loss in semi-transparent organic photovoltaic devices. Org. Electron. 74, 37–40 (2019)

    Article  CAS  Google Scholar 

  13. D.K. Kim, J.-Ho. Choi, A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors. Opt. Mater. 76, 359–367 (2018)

    Article  CAS  Google Scholar 

  14. L. Wang, Metal-organic frameworks for QCM-based gas sensors: a review. Sensors Actuators A 3071, 111984 (2020)

    Article  Google Scholar 

  15. Y.G. Mourzina, A. Offenhäusser, Electrochemical properties and biomimetic activity of water-soluble meso-substituted Mn(III) porphyrin complexes in the electrocatalytic reduction of hydrogen peroxide. J. Electroanal. Chem. 8661, 114159 (2020)

    Article  Google Scholar 

  16. R. Boukoureshtlieva, Y. Milusheva, I. Popov, A. Trifonova, A. Momchilov, Application of pyrolyzed Cobalt(II) tetramethoxyphenyl porphyrin based catalyst in metal-air systems and enzyme electrodes. Electrochim. Acta 3531, 136472 (2020)

    Article  Google Scholar 

  17. G. Zhu, Q. Sun, Y. Kawazoe, P. Jena, Porphyrin-based porous sheet: optoelectronic properties and hydrogen storage. Int. J. Hydrogen Energy 40, 3689–3696 (2015)

    Article  CAS  Google Scholar 

  18. I. Sebarchievici, B.-O. Taranu, S.F. Rus, E. Fagadar-Cosma, Electrochemical behaviour and analytical applications of a manganese porphyrin-silica hybrid film prepared by pulsed laser deposition. J. Electroanal. Chem. 86515, 114127 (2020)

    Article  Google Scholar 

  19. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, M.M. Makhlouf, Influence of high-energy X-ray irradiation on the optical properties of tetraphenylporphyrin thin films. Opt. Laser Technol. 39, 347–352 (2007)

    Article  CAS  Google Scholar 

  20. H.M. Zeyada, M.M. El-Nahass, M.M. Makhlouf, Electronic transport mechanisms in tetraphenyleprophyrin thin films. Curr. Appl. Phys. 11, 1326–1331 (2011)

    Article  Google Scholar 

  21. A.A. Al-Zubaidi, A.A.A. Elfaki, A.A.A. Darwish, Influence of film thickness on structural and optical properties of 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine nanostructure thin films for optical applications. J. Mol. Struct. 1218, 128499 (2020)

    Article  CAS  Google Scholar 

  22. R. Shirley, The CRYSFIRE System for Automatic Powder Indexing: User’s Manual (The Lattice Press, Guildford, 2000).

    Google Scholar 

  23. J. Laugier, B. Bochu, Checkcell, LMGP-Suite of Programs for the Interpretation of X-Ray Experiments. Ensp/Laboratoire des Materiaux et du Genie, Physique, Saint Martin d’Heres (2004)

  24. A.Z. Mahmoud, A.A.A. Darwish, S.I. Qashou, Film thickness effects on nanorods organic films of azo quinoline derivatives for optical. Progress Natural Sci. 29, 402–409 (2019)

    Article  CAS  Google Scholar 

  25. I. Saleem, S.E. Qashou, A.A.A. Al Garni, M.M. Darwish, A. Hawamdeh, Aldrabee, Gamma radiation effect on physical properties of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone films, Optik 170 (2018) 540547

  26. S. Venkatachalam, D. Mangalaraj, S.K. Narayanadass, Characterization of vacuum evaporated ZnSe thin films. Phys. B 393, 47–55 (2007)

    Article  CAS  Google Scholar 

  27. A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, M.R. Muhamad, Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Ultrason. Sonochem. 86, 1107–1112 (2012)

    CAS  Google Scholar 

  28. M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.A. Darwish, Electrical conductivity of 4-tricyanovinyl-N,N-diethylaniline. Phys. B 403, 219–223 (2008)

    Article  CAS  Google Scholar 

  29. K.N.N. Unni, C.S. Menon, Electrical and optical studies on metal-free phthalocyanine thin films. J. Mater. Sci. Lett. 20, 1207–1209 (2001)

    Article  CAS  Google Scholar 

  30. M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970).

    Google Scholar 

  31. A. Ahmad, R.A. Collins, Ohmic and space-charge‐limited conduction in lead phthalocyanine thin films. Phys. Status Solidi A 123, 201 (1991)

    Article  CAS  Google Scholar 

  32. R.D. Gould, The interpretation of space-charge-limited currents in semiconductors and insulators. J. Appl. Phys. 53, 3353 (1982)

    Article  CAS  Google Scholar 

  33. I. Saleem, A.A.A. Qashou, S.E. Darwish, Al Garni, Enhancement of microstructure and electrical conductivity of N,N′-dimethyl-3,4,9,10-perylenedicarboximidenanostructured films by thermal annealing for photoelectronic applications. Synth. Met. 242, 67–72 (2018)

    Article  Google Scholar 

  34. A.A.A. Darwish, E.F.M. El-Zaidia, S.I. Qashou, Investigation of structural and electrical properties of 2,9-Bis [2-(4-2chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone (Ch-diisoQ) nanostructured films for photoelectronic applications, Physica B 558 (2019) 116121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. A. Darwish.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zubaidi, A.A., Elfaki, A.A.A., Al-Ghamdi, S.A. et al. Structural analytical and electrical conduction mechanisms of 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine nanostructure films. J Mater Sci: Mater Electron 32, 10070–10077 (2021). https://doi.org/10.1007/s10854-021-05665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05665-4

Navigation