Skip to main content
Log in

Role of assisting reagents on the synthesis of α-Fe2O3 by microwave-assisted hydrothermal reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Currently, the controlled synthesis of well-defined metal oxide nanoparticles has received intense scientific attention to modulate the properties of materials through the size and shape. This paper focuses on providing a better understanding about the growth, morphology, size, and crystal structure of α-Fe2O3 nanoparticles synthesized by a microwave-assisted hydrothermal route, considering a detailed analysis of the influence of the reaction temperature, time, and ratio of assisting reagents (sodium citrate and urea) as well as the effects of calcination temperature. According to X-Ray Diffraction analysis, the α-Fe2O3 crystalline phase was directly prepared at 200 °C for 60 min using only urea, while materials with low crystallinity were obtained using only sodium citrate as well as sodium citrate:urea (in both ratio 1:1 and 2:2.5). Upon calcination at 600 °C, the crystallization of α-Fe2O3 started in the material prepared with a sodium citrate:urea ratio of 2:2.5. Scanning and Transmission Electron Microscopies results revealed that the materials synthesized using urea, sodium citrate, and sodium citrate:urea ratio of 1:1 are formed by nanoparticles less than 100 nm without a defined morphology, whereas the materials prepared using sodium citrate:urea ratio of 2:2.5 showed well-defined nanospheres with average sizes between 150 and 250 nm constituted by self-assembled crystals smaller than 10 nm. The shape and size of the nanospheres did not undergo significant changes even at high thermal treatments, such as 800 °C. Based on equilibrium diagrams, the role of each chemical agent was disclosed, indicating that the modulated precipitation through soluble complexes is a very important factor in controlling the hierarchical organization of the particles to form the nanospheres. This study demonstrates the versatility of sodium citrate and urea as assisting reagents to prepare a variety of α-Fe2O3 nanoparticles. Besides, these results could be useful in extending new ideas for the synthesis of other nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Tartaj, M.P. Morales, T. González-Carreño, S. Veintemillas-Verdaguer, C.J. Serna, Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater 290–291, 28–34 (2005). https://doi.org/10.1016/j.jmmm.2004.11.155

    Article  CAS  Google Scholar 

  2. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008). https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  3. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  4. S. Naza, M. Islam, S. Tabassum, N.F. Fernandes, E.J. Carcache de Blanco, M. Zia, Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J. Mol. Struct. 1185, 1–7 (2019). https://doi.org/10.1016/j.molstruc.2019.02.088

    Article  CAS  Google Scholar 

  5. S. Sundar, V. Ganesh, Bio-assisted preparation of efficiently architectured nanostructures of γ-Fe2O3 as a molecular recognition platform for simultaneous detection of biomarkers. Sci. Rep. 10, 15071 (2020). https://doi.org/10.1038/s41598-020-71934-7

    Article  CAS  Google Scholar 

  6. A. Mirzaei, B. Hashemi, K. Janghorban, α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci: Mater. Electron. 27, 3109–3144 (2016). https://doi.org/10.1007/s10854-015-4200-z

    Article  CAS  Google Scholar 

  7. T. Alizadeh, F. Jamshidi, Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. J. Solid State Electrochem. 19, 1053–1062 (2015). https://doi.org/10.1007/s10008-014-2716-4

    Article  CAS  Google Scholar 

  8. X. Gou, G. Wang, J. Park, H. Liu, J. Yang, Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19, 125606 (2008). https://doi.org/10.1088/0957-4484/19/12/125606

    Article  CAS  Google Scholar 

  9. J. Ma et al., Porous platelike hematite mesocrystals: Synthesis, catalytic and gas-sensing applications. J. Mater. Chem. 22, 11694–11700 (2012). https://doi.org/10.1039/c2jm30216k

    Article  CAS  Google Scholar 

  10. L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk-shell (core-shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7, 13098–13104 (2015). https://doi.org/10.1021/acsami.5b03978

    Article  CAS  Google Scholar 

  11. D. Zhang, M. Chen, H. Zou, Y. Zhang, J. Hu, H. Wang, B. Zi, J. Zhang, Z. Zhu, L. Duan, Q. Liu, Microwave-assisted synthesis of porous and hollow α-Fe2O3/LaFeO3 nanostructures for acetone gas sensing as well as photocatalytic degradation of methylene blue. Nanotechnology 31, 215601 (2020). https://doi.org/10.1088/1361-6528/ab73b5

    Article  CAS  Google Scholar 

  12. X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007). https://doi.org/10.1002/adma.200602176

    Article  CAS  Google Scholar 

  13. Z. Liu, R. Yu, Y. Dong, W. Li, W. Zhou, Preparation of α-Fe2O3 hollow spheres, nanotubes, nanoplates and nanorings as highly efficient Cr(VI) adsorbents. RSC Adv. 6, 82854–82861 (2016). https://doi.org/10.1039/c6ra15245g

    Article  CAS  Google Scholar 

  14. C.L. Dlamini, L.A. De Kock, K.K. Kefeni, B.B. Mamba, T.A. Makudali Msagati, Polymeric ion exchanger supported ferric oxide nanoparticles as adsorbents for toxic metal ions from aqueous solutions and acid mine drainage. J. Environ. Health Sci. Eng. 17, 719–730 (2019). https://doi.org/10.1007/s40201-019-00388-5

    Article  CAS  Google Scholar 

  15. T. Phuengprasop, J. Sittiwong, F. Unob, Removal of heavy metal ions by iron oxide coated sewage sludge. J. Hazard. Mater. 186, 502–507 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.065

    Article  CAS  Google Scholar 

  16. G. Qiu et al., Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J. Phys. Chem. C 115, 19626–19631 (2011). https://doi.org/10.1021/jp2067217

    Article  CAS  Google Scholar 

  17. Y. Dehmani, A.A. Alrashdi, H. Lgaz, T. Lamhasni, S. Abouarnadasse, I.-M. Chung, Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): mechanism exploration from both experimental and theoretical studies. Arab. J. Chem. 13, 5474–5486 (2020). https://doi.org/10.1016/j.arabjc.2020.03.026

    Article  CAS  Google Scholar 

  18. A. Dehbi, Y. Dehmani, H. Omari, A. Lammini, K. Elazhari, A. Abdallaoui, Hematite iron oxide nanoparticles (α-Fe2O3): synthesis and modelling adsorption of malachite green. J. Environ. Chem. Eng. 8, 103394 (2020). https://doi.org/10.1016/j.jece.2019.103394

    Article  CAS  Google Scholar 

  19. A.L. Cazetta, O. Pezoti, K.C. Bedin, T.L. Silva, A.P. Junior, T. Asefa, V.C. Almeida, Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustain. Chem. Eng. 4, 1058–1068 (2016). https://doi.org/10.1021/acssuschemeng.5b01141

    Article  CAS  Google Scholar 

  20. H. Zhang, D. Li, W.J. Byun, X. Wang, T.J. Shin, H.Y. Jeong, H. Han, C. Li, J.S. Lee, Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 11, 4622 (2020). https://doi.org/10.1038/s41467-020-18484-8

    Article  CAS  Google Scholar 

  21. S. Arumugam, Y. Toku, Y. Ju, Fabrication of γ-Fe2O3 nanowires from abundant and low-cost Fe plate for highly effective electrocatalytic water splitting. Sci. Rep. 10, 5407 (2020). https://doi.org/10.1038/s41598-020-62259-6

    Article  Google Scholar 

  22. J.W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey, J. Guo, D. Wang, Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015). https://doi.org/10.1038/ncomms8447

    Article  Google Scholar 

  23. H. Liang, W. Chen, Y. Yao, Z. Wang, Y. Yang, Hydrothermal synthesis, self-assembly and electrochemical performance of α-Fe2O3 microspheres for lithium ion batteries. Ceram. Int. 40, 10283–10290 (2014). https://doi.org/10.1016/j.ceramint.2014.02.120

    Article  CAS  Google Scholar 

  24. B. Nageswara Rao, P. Ramesh Kumar, O. Padmaraj, M. Venkateswarlu, N. Satyanarayana, Rapid microwave assisted hydrothermal synthesis of porous α-Fe2O3 nanostructures as stable and high capacity negative electrode for lithium and sodium ion batteries. RSC Adv. 5, 34761–34768 (2015). https://doi.org/10.1039/c5ra03238e

    Article  CAS  Google Scholar 

  25. L. Zhang, H.B. Wu, X.W. Lou, Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater 4, 1300958 (2014). https://doi.org/10.1002/aenm.201300958

    Article  CAS  Google Scholar 

  26. C. Duan, F. Zhu, C. Wang, X. Ke, G. Ren, Y. Meng, 3D Porous iron oxide/carbon with large surface area as advanced anode materials for lithium-ion batteries. Ionics 26, 4327–4338 (2020). https://doi.org/10.1007/s11581-020-03574-w

    Article  CAS  Google Scholar 

  27. J. Yu, X. Yu, B. Huang, X. Zhang, Y. Dai, Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Cryst. Growth Des. 9, 1474–1480 (2009). https://doi.org/10.1021/cg800941d

    Article  CAS  Google Scholar 

  28. X. Wang, J. Wang, Z. Cui, S. Wang, M. Cao, Facet effect of α-Fe2O3 crystals on photocatalytic performance in the photo-Fenton reaction. RSC Adv. 4, 34387–34394 (2014). https://doi.org/10.1039/c4ra03866e

    Article  CAS  Google Scholar 

  29. J. Qu, Y. Yu, C.Y. Cao, W.G. Song, α-Fe2O3 nanodisks: layered structure, growth mechanism, and enhanced photocatalytic property. Chem. Eur. J. 9, 11172–11177 (2013). https://doi.org/10.1002/chem.201301295

    Article  CAS  Google Scholar 

  30. Y. Jiao, Y. Liu, F. Qu, A. Umar, X. Wu, Visible-light-driven photocatalytic properties of simply synthesized α-Iron(III)oxide nanourchins. J. Colloid Interface Sci. 451, 93–100 (2015). https://doi.org/10.1016/j.jcis.2015.03.055

    Article  CAS  Google Scholar 

  31. M. Sriramulu, Balaji, S. Sumathi, Photo catalytic, antimicrobial and antifungal activity of biogenic iron oxide nanoparticles synthesised using Aegle marmelos extracts. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01812-2

    Article  Google Scholar 

  32. T.W. Sun, Y.J. Zhu, C. Qi, G.J. Ding, F. Chen, J. Wu, α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis. J. Colloid Interface Sci. 463, 107–117 (2016). https://doi.org/10.1016/j.jcis.2015.10.038

    Article  CAS  Google Scholar 

  33. S. Parveen, A.H. Wani, M.A. Shah, H.S. Devi, M.Y. Bhat, J.A. Koka, Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis 115, 287–292 (2018). https://doi.org/10.1016/j.micpath.2017.12.068

    Article  CAS  Google Scholar 

  34. R. Prucek, J. Tuček, M. Kilianová, A. Panáček, L. Kvítek, J. Filip, M. Kolář, K. Tománková, R. Zbořil, The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32, 4704–4713 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.039

    Article  CAS  Google Scholar 

  35. F. Davar, H. Hadadzadeh, T.S. Alaedini, Single-phase hematite nanoparticles: non-alkoxide sol–gel based preparation, modification and characterization. Ceram. Int. 42, 19336–19342 (2016). https://doi.org/10.1016/j.ceramint.2016.09.104

    Article  CAS  Google Scholar 

  36. P. Katikaneani, A.K. Vaddepally, N. Reddy Tippana, R. Banavath, S. Kommu, Phase transformation of iron oxide nanoparticles from hematite to maghemite in presence of polyethylene glycol: application as corrosion resistant nanoparticle paints. J. Nanosci. (2016). https://doi.org/10.1155/2016/1328463

    Article  Google Scholar 

  37. W.H. Xu et al., Investigation of the facet-dependent performance of α-Fe2O3 nanocrystals for heavy metal determination by stripping voltammetry. Chem. Commun. 50, 5011–5013 (2014). https://doi.org/10.1039/c4cc01029a

    Article  CAS  Google Scholar 

  38. L. Li, B. Wang, Y. Chu, A novel approach to synthesize hollow α-Fe2O3 spheres via hydrothermal treatment. Res. Chem. Intermed. 41, 3003–3010 (2015). https://doi.org/10.1007/s11164-013-1408-5

    Article  CAS  Google Scholar 

  39. X. Hu, J.C. Yu, Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method. Adv. Funct. Mater. 18, 880–887 (2008). https://doi.org/10.1002/adfm.200700671

    Article  CAS  Google Scholar 

  40. S. Mallesh, D. Narsimulu, K.H. Kim, High coercivity in α-Fe2O3 nanostructures synthesized by surfactant-free microwave-assisted solvothermal method. Phys. Lett. A 384, 126038 (2020). https://doi.org/10.1016/j.physleta.2019.126038

    Article  CAS  Google Scholar 

  41. O.E. Landford, J.R. Quinan, A spectrophotometric study of the reaction of ferric iron and citric acids. J. Am. Chem. Soc. 70, 2900–2903 (1948). https://doi.org/10.1021/ja01189a020

    Article  Google Scholar 

  42. J. Maslowska, H. Czerwinska, Polarographic studies on iron(II) complexes with carbamide derivatives containing alkyl substituents. Inorg. Chem. 24, 4511–4515 (1985). https://doi.org/10.1021/ic00220a019

    Article  Google Scholar 

  43. Y. Arai, M. Ogawa, Preparation of Co-Al layered double hydroxides by the hydrothermal urea method for controlled particle size. Appl. Clay Sci. 42, 601–604 (2009). https://doi.org/10.1016/j.clay.2008.04.011

    Article  CAS  Google Scholar 

  44. R. Zanella, S. Giorgio, C.R. Henry, C. Louis, Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B 106, 7634–7642 (2002). https://doi.org/10.1021/jp0144810

    Article  CAS  Google Scholar 

  45. A.M.N. Silva, X. Kong, M.C. Parkin, R. Cammack, R.C. Hider, Iron(iii) citrate speciation in aqueous solution. Dalton Trans. 40, 8616–8625 (2009). https://doi.org/10.1039/b910970f

    Article  CAS  Google Scholar 

  46. T.G. Spiro, L. Pape, P. Saltman, The hydrolytic polymerization of ferric citrate. I. The chemistry of the polymer. J. Am. Chem. Soc. 89, 5555–5559 (1967). https://doi.org/10.1021/ja00998a008

    Article  CAS  Google Scholar 

  47. T.G. Spiro, G. Bates, P. Saltman, The hydrolytic polymerization of ferric citrate. II. The influence of excess citrate. J. Am. Chem. Soc. 89, 5559–5562 (1967). https://doi.org/10.1021/ja00998a009

    Article  CAS  Google Scholar 

  48. M. Matzapetakis, C.P. Raptopoulou, A. Tsohos, V. Papaefthymiou, N. Moon, A. Salifoglou, Synthesis, spectroscopic and structural characterization of the first mononuclear, water soluble iron-citrate complex, (NH4)5Fe(C6H4O7)2·2H2O. J. Am. Chem. Soc. 120, 13266–13267 (1998). https://doi.org/10.1021/ja9807035

    Article  CAS  Google Scholar 

  49. S.C. Liew, I. Ramli, N. Yahya, A. Halim Shaari, Thermal decomposition of iron citrate into nano-sized iron (III) oxide deposited on Si wafer by using pulsed laser ablation. J. Appl. Sci. Res. 9, 5497–5501 (2013)

    Google Scholar 

  50. R. Rizo, M.J. Lázaro, E. Pastor, G. García, Spectroelectrochemical study of carbon monoxide and ethanol oxidation on Pt/C, PtSn(3:1)/C and PtSn(1:1)/C catalysts. Molecules 21, 1225 (2016). https://doi.org/10.3390/molecules21091225

    Article  CAS  Google Scholar 

  51. X. Huang et al., Magnetic nanoparticles with functional silanes: evolution of well-defined shells from anhydride containing silane. J. Mater. Chem. 19, 4231–4239 (2009). https://doi.org/10.1039/b821917f

    Article  CAS  Google Scholar 

  52. B. Pal, M. Sharon, Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties. Thin Solid Films 379, 83–88 (2000). https://doi.org/10.1016/S0040-6090(00)01547-9

    Article  CAS  Google Scholar 

  53. C.V.G. Reddy, K.K. Seela, S.V. Manorama, Preparation of γ-Fe2O3 by the hydrazine method: application as an alcohol sensor. Int. J. Inorg. Mater. 2, 301–307 (2000). https://doi.org/10.1016/S1466-6049(00)00044-1

    Article  CAS  Google Scholar 

  54. V. Sreeja, P.A. Joy, Microwave-hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater. Res. Bull. 42, 1570–1576 (2007). https://doi.org/10.1016/j.materresbull.2006.11.014

    Article  CAS  Google Scholar 

  55. J. Matutes-Aquino, P. García-Casillas, O. Ayala-Valenzuela, S. García-García, Study of iron oxides obtained by decomposition of an organic precursor. Mater. Lett. 38(1999), 173–177 (1999). https://doi.org/10.1016/S0167-577X(98)00154-2

    Article  CAS  Google Scholar 

  56. X. Liao, J. Zhu, W. Zhong, H.Y. Chen, Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation. Mater. Lett. 50, 341–346 (2001). https://doi.org/10.1016/S0167-577X(01)00251-8

    Article  CAS  Google Scholar 

  57. N.D. Phu, D.T. Ngo, L.H. Hoang, N.H. Luong, N. Chau, N.H. Hai, Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J. Phys. D. Appl. Phys. 44, 345002 (2011). https://doi.org/10.1088/0022-3727/44/34/345002

    Article  CAS  Google Scholar 

  58. Z. Xia, J. Sha, Y. Fang, Y. Wan, Z. Wang, Y. Wang, Purposed built ZnO/Zn5(OH)8Ac2· 2H2O architectures by hydrothermal synthesis. Cryst. Growth Des. 10, 2759–2765 (2010). https://doi.org/10.1021/cg100271n

    Article  CAS  Google Scholar 

  59. Y. Bao, C. Wang, J. Ma, Trisodium citrate as bridging and suppressing agent to control synthesis of ZnO hollow hierarchical microspheres and their photocatalytic properties. Ceram. Int. 42, 1746–1755 (2016). https://doi.org/10.1016/j.ceramint.2015.09.133

    Article  CAS  Google Scholar 

  60. S. Fu, J. Gao, Y. Wu, T. Wu, Facile synthesis of hierarchically structured NiO flower-like hollow spheres. J. Exp. Nanosci. 11, 531–539 (2016). https://doi.org/10.1080/17458080.2015.1090022

    Article  CAS  Google Scholar 

  61. S. Yang et al., Titania single crystals with a curved surface. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms6355

    Article  CAS  Google Scholar 

  62. M. Hjiri, M. Aida, G. Neri, NO2 selective sensor based on α-Fe2O3 nanoparticles synthesized via hydrothermal technique. Sensors 19, 167 (2019). https://doi.org/10.3390/s19010167

    Article  CAS  Google Scholar 

  63. Y. Cao, A.Q. Zhang, H. Zhang, G.Q. Ding, L.S. Zhang, A facile route to achieve Fe2O3 hollow sphere anchored on carbon nanotube for application in lithium-ion battery. Inorg. Chem. Commun. 111, 107633 (2020). https://doi.org/10.1016/j.inoche.2019.107633

    Article  CAS  Google Scholar 

  64. X. Zhang, S. Li, S.A. El-Khodary, B. Zou, S. Yang, D.H.L. Ng, X. Liu, J. Lian, H. Li, Porous α-Fe2O3 nanoparticles encapsulated within reduced graphene oxide as superior anode for lithium-ion battery. Nanotechnology 31, 145404 (2020). https://doi.org/10.1088/1361-6528/ab667d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Consejo Nacional de Ciencia y Tecnología from Mexico (CONACYT) for funding, to LANNBIO Cinvestav-Mérida for the use of the facilities, as well as the technical assistance of Daniel Aguilar and Dora Huerta.

Funding

This research was funded by Consejo Nacional de Ciencia y Tecnología from Mexico (CONACYT) through the projects: Cátedra 1710, INFR-2015-01-252758 and CB-2015-255109 as well as the support to LANNBIO Cinvestav-Mérida by the Grants FOMIX Yucatán 2008-108160, CONACYT LAB-2009-01-123913, 188345, 204822, 292692 and 294643.

Author information

Authors and Affiliations

Authors

Contributions

MAR-G contributed to synthesis, caracterization, discussion, and writing. GR-G, MZF-T, and SO performed discussion and writing. ST-C was involved in characterization, discussion, and writing. MA-F contributed to characterization and discussion. All the authors have approved the final version of this manuscript.

Corresponding author

Correspondence to Miguel A. Ruiz-Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Gómez, M.A., Rodríguez-Gattorno, G., Figueroa-Torres, M.Z. et al. Role of assisting reagents on the synthesis of α-Fe2O3 by microwave-assisted hydrothermal reaction. J Mater Sci: Mater Electron 32, 9551–9566 (2021). https://doi.org/10.1007/s10854-021-05618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05618-x

Navigation