Skip to main content
Log in

Fabrication of DNA/NiSi NWs and Ag NPs-NiSi NWs-based Schottky diodes for DNA detection with fast response time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we fabricated deoxyribonucleic acid/nickel silicide nanowires (DNA/NiSi NWs) and DNA-silver nanoparticles decorated NiSi NWs (DNA/Ag NPs-NiSi NWs) Schottky diodes and generated current–voltage (I–V) measurements with response time of 0.08–40 min at room temperature. The results demonstrate significant morphological changes towards both NiSi NWs and Ag NPs-NiSi NWs back contact, attributing to the presence of DNA, which subsequently affected the optical properties of the NWs. On the other hand, the utilisation of Ag NPs decorated NiSi NWs as the back contact yielded a relatively significant Raman spectral fingerprint with an enhanced Raman scattering factor of 1018 when integrated with DNA due to its localised surface plasmon resonance (LSPR) effect in the visible region. The electrical properties for both NWs reacted to DNA against reaction time were calculated and DNA/Ag NPs-NiSi NWs showed better conductivity. The rectifying behaviour of DNA is reflected in the I–V profiles of the hybrid heterostructure DNA/Ag NPs-NiSi NWs diode. The fabricated device demonstrated rectifying behaviours with the turn-on voltage of 0.3 V, ideality factor of 1.4, reverse saturation current of 3.14 × 10−18 A/cm2, and series resistance of 22.47 kΩ. Additionally, the high rectification ratio of 789013.30 demonstrated the higher sensitivity of Ag NPs-NiSi NWs-based Schottky diodes towards DNA than the NiSi NWs diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ö. Güllü, O. Pakma, A. Türüt, Current density-voltage analyses and interface characterization in Ag/DNA/p-InP structures. J. Appl. Phys. 111, 044503 (2012). https://doi.org/10.1063/1.3684989

    Article  CAS  Google Scholar 

  2. Ö. Güllü, M. Çankaya, Ö. Bariş, A. Türüt, DNA-based organic-on-inorganic devices: Barrier enhancement and temperature issues. Microelectron. Eng. 85, 2250–2255 (2008). https://doi.org/10.1016/j.mee.2008.07.003

    Article  CAS  Google Scholar 

  3. W.J. Kim, M.J. Cho, J. Seo, C.M. Bartsch, J. Grote, P.N. Prasad, Nanocomposite approaches for enhancing the DC and photoconductivity of DNA films. Nanotechnology. 24, 335203 (2013). https://doi.org/10.1088/0957-4484/24/33/335203

    Article  CAS  Google Scholar 

  4. V. Bhalla, R.P. Bajpai, L.M. Bharadwaj, DNA electronics. EMBO Rep. 4, 442–445 (2003). https://doi.org/10.1038/sj.embor.embor834

    Article  CAS  Google Scholar 

  5. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002). https://doi.org/10.1126/science.1071247

    Article  CAS  Google Scholar 

  6. A.A. Al-Ghamdi, O.A. Al-Hartomy, R. Gupta, F. El-Tantawy, E. Taskan, H. Hasar, F. Yakuphanoglu, A DNA biosensor based interface states of a metal-insulator-semiconductor diode for biotechnology applications. Acta Phys. Pol. A 121, 673–677 (2012). https://doi.org/10.12693/APhysPolA.121.673

    Article  Google Scholar 

  7. R.K. Gupta, F. Yakuphanoglu, H. Hasar, A.A. Al-Khedhairy, P-Si/DNA photoconductive diode for optical sensor applications. Synth. Met. 161, 2011–2016 (2011). https://doi.org/10.1016/j.synthmet.2011.07.016

    Article  CAS  Google Scholar 

  8. D.Y. Zang, J.G. Grote, Photoelectrical effect and current-voltage characteristics in DNA-metal Schottky barriers. Int. Soc. Opt. Photonics. 6470, 64700A (2007). https://doi.org/10.1117/12.716083

    Article  CAS  Google Scholar 

  9. Ö. Güllü, M. Çankaya, Ö. Bariş, M. Biber, H. Özdemir, M. Güllüce, A. Türüt, DNA-based organic-on-inorganic semiconductor Schottky structures. Appl. Surf. Sci. 254, 5175–5180 (2008). https://doi.org/10.1016/j.apsusc.2008.02.019

    Article  CAS  Google Scholar 

  10. V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, Y.S. Tan, H.A. Tajuddin, M. Iwamoto, Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA. Sci. Rep. 6, 29879 (2016). https://doi.org/10.1038/srep29879

    Article  CAS  Google Scholar 

  11. N. Rizan, C.Y. Yew, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S. Devadas, M.S.M. Din, H.A. Tajuddin, R.Y. Othman, S.M. Phang, M. Iwamoto, V. Periasamy, Electronic properties of synthetic shrimp pathogens-derived DNA Schottky diodes. Sci. Rep. 6, 1–9 (2018). https://doi.org/10.1038/s41598-017-18825-6

    Article  CAS  Google Scholar 

  12. H. Tabata, L.T. Cai, J. Gu, S. Tanaka, Y. Otsuka, Y. Sacho, M. Taniguchi, T. Kawai, Toward the DNA electronics. Synth. Matels. 134, 469–472 (2003)

    Article  Google Scholar 

  13. F. Peng, Y. Su, Y. Zhong, C. Fan, S.T. Lee, Y. He, Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612–623 (2014). https://doi.org/10.1021/ar400221g

    Article  CAS  Google Scholar 

  14. M. Becker, V. Sivakov, U. Gösele, T. Stelzner, G. Andrä, H.J. Reich, S. Hoffmann, J. Michler, S.H. Christiansen, Nanowires enabling signal-enhanced nanoscale Raman spectroscopy. Small. 4, 398–404 (2008). https://doi.org/10.1002/smll.200701007

    Article  CAS  Google Scholar 

  15. F. Patolsky, Y. Weizmann, I. Willner, Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 3, 692–695 (2004). https://doi.org/10.1038/nmat1205

    Article  CAS  Google Scholar 

  16. J. Yuan, F. Schacher, M. Drechsler, A. Hanisch, Y. Lu, M. Ballauff, A.H.E. Müller, Stimuli-responsive organosilica hybrid nanowires decorated with metal nanoparticles. Chem. Mater. 22, 2626–2634 (2010). https://doi.org/10.1021/cm9038076

    Article  CAS  Google Scholar 

  17. I. Willner, R. Baron, B. Willner, Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 22, 1841–1852 (2007). https://doi.org/10.1016/j.bios.2006.09.018

    Article  CAS  Google Scholar 

  18. J.J. Determination, Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal / semiconductor nanowire heterostructures. Nature 430, 61 (2004)

    Article  Google Scholar 

  19. J.T. Sheu, S.P. Yeh, S.T. Tsai, C.H. Lien, Fabrication and electrical transport properties of nickel monosilicide nanowires, in: 5th IEEE Conf. Nanotechnology, 2005., 2005: pp. 780–783. doi:https://doi.org/10.1109/NANO.2005.1500647.

  20. S.Y. Chen, P.H. Yeh, W.W. Wu, U.S. Chen, Y.L. Chueh, Y.C. Yang, S. Gwo, L.J. Chen, Low resistivity metal silicide nanowires with extraordinarily high aspect ratio for future nanoelectronic devices. ACS Nano 5, 9202–9207 (2011). https://doi.org/10.1021/nn203445p

    Article  CAS  Google Scholar 

  21. Y. Song, A.L. Schmitt, S. Jin, Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 7, 965–969 (2007)

    Article  CAS  Google Scholar 

  22. C.Y. Lee, M.P. Lu, K.F. Liao, W.F. Lee, C. Te Huang, S.Y. Chen, L.J. Chen, Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties. J. Phys. Chem. C. 113, 2286–2289 (2009). https://doi.org/10.1021/jp809029q

    Article  CAS  Google Scholar 

  23. K.E. Fong, L.Y.L. Yung, Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale. 5, 12043–12071 (2013). https://doi.org/10.1039/c3nr02257a

    Article  CAS  Google Scholar 

  24. M.W. Shao, M.L. Zhang, N.B. Wong, D.D.D. Ma, H. Wang, W. Chen, S.T. Lee, Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Appl. Phys. Lett. 93, 1–4 (2008). https://doi.org/10.1063/1.2969292

    Article  CAS  Google Scholar 

  25. J.A. Huang, Y.Q. Zhao, X.J. Zhang, L.F. He, T.L. Wong, Y.S. Chui, W.J. Zhang, S.T. Lee, Ordered Ag/Si nanowires array: Wide-range surface-enhanced raman spectroscopy for reproducible biomolecule detection. Nano Lett. 13, 5039–5045 (2013). https://doi.org/10.1021/nl401920u

    Article  CAS  Google Scholar 

  26. J.P. Coppé, Z. Xu, Y. Chen, G. Logan Liu, Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules. Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/24/245710

    Article  Google Scholar 

  27. X. Han, H. Wang, X. Ou, X. Zhang, Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks. J. Mater. Chem. 22, 14127–14132 (2012). https://doi.org/10.1039/c2jm31443f

    Article  CAS  Google Scholar 

  28. G. Wang, H. Tanaka, L. Hong, Y. Matsuo, K. Niikura, M. Abe, K. Matsumoto, T. Ogawa, K. Ijiro, Novel charge transport in DNA-templated nanowires. J. Mater. Chem. 22, 13691–13697 (2012). https://doi.org/10.1039/c2jm31839c

    Article  CAS  Google Scholar 

  29. N. Fatin, F. Binti, N. Rizan, V. Periasamy, S.A. Rahman, B.T. Goh, Physical, optical and electrical studies on hybrid Ag NPs / NiSi NWs electrode as a DNA template for biosensor. Mater. Res. Express. 6(9), 095039 (2019)

    Article  Google Scholar 

  30. V. Periasamy, N. Rizan, H. Maktuff, J. Al-ta, Y.S. Tan, Measuring the electronic properties of DNA-specific Schottky diodes towards detecting and identifying basidiomycetes DNA. Nat. Publ. Gr. (2016). https://doi.org/10.1038/srep29879

    Article  Google Scholar 

  31. B.B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, X. Cheng, Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced raman spectroscopy. Adv. Funct. Mater. 18, 2348–2355 (2008). https://doi.org/10.1002/adfm.200800153

    Article  CAS  Google Scholar 

  32. X.T. Wang, W.S. Shi, G.W. She, L.X. Mu, S.T. Lee, High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Appl. Phys. Lett. 96, 2008–2011 (2010). https://doi.org/10.1063/1.3300837

    Article  CAS  Google Scholar 

  33. H.C. Lo, H.I. Hsiung, S. Chattopadhyay, H.C. Han, C.F. Chen, J.P. Leu, K.H. Chen, L.C. Chen, Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosens. Bioelectron. 26, 2413–2418 (2011). https://doi.org/10.1016/j.bios.2010.10.022

    Article  CAS  Google Scholar 

  34. O. Fellahi, R.K. Sarma, M.R. Das, R. Saikia, L. Marcon, Y. Coffinier, T. Hadjersi, M. Maamache, R. Boukherroub, The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology (2013). https://doi.org/10.1088/0957-4484/24/49/495101

    Article  Google Scholar 

  35. Y. Shan, Y. Yang, Y. Cao, H. Yin, N.V. Long, Z. Huang, S. Microstructures, Hydrogenated Black TiO2 nanowires decorated by ag nanoparticles as highly-improved sensitive and reusable SERS Substrates, (2015) 2–6.

  36. R. Subbiah, M. Veerapandian, S. Sadhasivam, K. Yun, Triad CNT-NPs/polymer nanocomposites: fabrication, characterization, and preliminary antimicrobial study. Synth. React. Inorganic. Met. Nano-Metal Chem. 41, 345–355 (2011). https://doi.org/10.1080/15533174.2011.555868

    Article  CAS  Google Scholar 

  37. Y.C. Hung, T.Y. Lin, W.T. Hsu, Y.W. Chiu, Y.S. Wang, L. Fruk, Functional DNA biopolymers and nanocomposite for optoelectronic applications. Opt. Mater. (Amst) 34, 1208–1213 (2012). https://doi.org/10.1016/j.optmat.2012.01.035

    Article  CAS  Google Scholar 

  38. W. Chen, G.B. Schuster, Structural stabilization of DNA-templated nanostructures: crosslinking with 2,5-bis(2-thienyl)pyrrole monomers. Orgn. Biomol. Chem. 11, 35–40 (2013). https://doi.org/10.1039/c2ob26716k

    Article  CAS  Google Scholar 

  39. E. Buzaneva, A. Karlash, K. Yakovkin, Y. Shtogun, S. Putselyk, D. Zherebetskiy, A. Gorchinskiy, G. Popova, S. Prilutska, O. Matyshevska, Y. Prilutskyy, P. Lytvyn, P. Scharff, P. Eklund, DNA nanotechnology of carbon nanotube cells: physico-chemical models of self-organization and properties. Mater. Sci. Eng. C 19, 41–45 (2002). https://doi.org/10.1016/S0928-4931(01)00425-8

    Article  Google Scholar 

  40. G.Y. Lan, W.Y. Chen, H.T. Chang, Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters. Analyst 136, 3623–3628 (2011). https://doi.org/10.1039/c1an15258k

    Article  CAS  Google Scholar 

  41. J.T. Petty, J. Zheng, N.V. Hud, R.M. Dickson, DNA-Templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004). https://doi.org/10.1021/ja031931o

    Article  CAS  Google Scholar 

  42. L. Zheng, R. Zhang, Y. Ni, Q. Du, Nanoparticles, catalytic performance of ag nanoparticles templated by polymorphic DNA. Catal Lett. (2010). https://doi.org/10.1007/s10562-010-0419-8

    Article  Google Scholar 

  43. Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, Y. Gao, Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector. Opt. Express. 22, 30148 (2014). https://doi.org/10.1364/oe.22.030148

    Article  CAS  Google Scholar 

  44. A. Convertino, M. Cuscunà, F. Martelli, M.G. Manera, R. Rella, Silica nanowires decorated with metal nanoparticles for refractive index sensors: three-dimensional metal arrays and light trapping at plasmonic resonances. J. Phys. Chem. C 118, 685–690 (2014). https://doi.org/10.1021/jp411743p

    Article  CAS  Google Scholar 

  45. Y.C. Pu, G. Wang, K. Der Chang, Y. Ling, Y.K. Lin, B.C. Fitzmorris, C.M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.J. Hsu, Y. Li, Au nanostructure-decorated TiO2nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3823 (2013). https://doi.org/10.1021/nl4018385

    Article  CAS  Google Scholar 

  46. S. Deng, H.M. Fan, X. Zhang, K.P. Loh, C.L. Cheng, C.H. Sow, Y.L. Foo, An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array. Nanotechnology (2009). https://doi.org/10.1088/0957-4484/20/17/175705

    Article  Google Scholar 

  47. C.S. Seney, B.M. Gutzman, R.H. Goddard, Correlation of size and surface-enhanced raman scattering activity of optical and spectroscopic properties for silver nanoparticles. J. Phys. Chem. C 113, 74–80 (2009). https://doi.org/10.1021/jp805698e

    Article  CAS  Google Scholar 

  48. J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from Individual Nanoparticles. Nano Lett (2003). https://doi.org/10.1021/nl0340475

    Article  Google Scholar 

  49. C.S. Yang, D.D. Awschalom, G.D. Stucky, Kinetic-dependent crystal growth of size-tunable CdS nanoparticles. Chem. Mater. 13, 594–598 (2001). https://doi.org/10.1021/cm0005384

    Article  CAS  Google Scholar 

  50. E. Mulazimoglu, G. Nogay, R. Turan, H. EmrahUnalan, Enhanced localized surface plasmon resonance obtained in two step etched silicon nanowires decorated with silver nanoparticles. Appl. Phys. Lett. 103, 20–25 (2013). https://doi.org/10.1063/1.4824646

    Article  CAS  Google Scholar 

  51. N.H. Jang, The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull. Korean Chem. Soc. 23, 1790–1800 (2002). https://doi.org/10.5012/bkcs.2002.23.12.1790

    Article  CAS  Google Scholar 

  52. R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, V. Deckert, Distinction of nucleobases: a tip-enhanced Raman approach. Beilstein J. Nanotechnol. 2, 628–637 (2011). https://doi.org/10.3762/bjnano.2.66

    Article  CAS  Google Scholar 

  53. M. Bhaskaran, S. Sriram, T.S. Perova, V. Ermakov, G.J. Thorogood, K.T. Short, A.S. Holland, In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon. Micron 40, 89–93 (2009). https://doi.org/10.1016/j.micron.2008.03.007

    Article  CAS  Google Scholar 

  54. M.L. Zhang, X. Fan, H.W. Zhou, M.W. Shao, J.A. Zapien, N.B. Wong, S.T. Lee, A high-efficiency surface-enhanced raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C 114, 1969–1975 (2010). https://doi.org/10.1021/jp902775t

    Article  CAS  Google Scholar 

  55. J.J. Baumberg, T.A. Keif, Y. Sugawara, S. Cintra, M.E. Abdelsalam, P.N. Bartlett, A.E. Russell, Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals. Nano Lett. 5, 2262–2267 (2005). https://doi.org/10.1021/nl051618f

    Article  CAS  Google Scholar 

  56. M.I. Stockman, S.V. Faleev, D.J. Bergman, Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 067402 (2002). https://doi.org/10.1103/PhysRevLett.88.067402

    Article  CAS  Google Scholar 

  57. Q. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai, W. Yi, J. Liu, J. Han, G. Xi, A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/ncomms14903

    Article  Google Scholar 

  58. Y. He, S. Su, T. Xu, Y. Zhong, J.A. Zapien, J. Li, C. Fan, S.T. Lee, Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today. 6, 122–130 (2011). https://doi.org/10.1016/j.nantod.2011.02.004

    Article  CAS  Google Scholar 

  59. M. Lv, S. Su, Y. He, Q. Huang, W. Hu, D. Li, C. Fan, S.T. Lee, Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 22, 5463–5467 (2010). https://doi.org/10.1002/adma.201001934

    Article  CAS  Google Scholar 

  60. M. Shao, L. Cheng, X. Zhang, D.D.D. Ma, S.T. Lee, Excellent photocatalysis of HF-treated silicon nanowires. J. Am. Chem. Soc. 131, 17738–17739 (2009). https://doi.org/10.1021/ja908085c

    Article  CAS  Google Scholar 

  61. Z. Gao, A. Agarwal, A.D. Trigg, N. Singh, C. Fang, C.H. Tung, K.D. Buddharaju, Silicon nanowire arrays for ultrasensitive label-free detection of DNA, in: TRANSDUCERS EUROSENSORS ’07-4th Int. Conf. Solid-State Sensors, Actuators Microsystems, 2007: pp. 3291–3297. doi:https://doi.org/10.1109/SENSOR.2007.4300555.

  62. R.A. Álvarez-Puebla, R. Contreras-Cáceres, I. Pastoriza-Santos, J. Pérez-Juste, L.M. Liz-Marzán, Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew. Chemie Int. Ed. 48, 138–143 (2009). https://doi.org/10.1002/anie.200804059

    Article  CAS  Google Scholar 

  63. W. Li, P.H.C. Camargo, X. Lu, Y. Xis, Dimers of Silver Nanosheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering. Nano Lett. 9, 485–490 (2009). https://doi.org/10.1021/nl803621x

    Article  CAS  Google Scholar 

  64. A. Sánchez-Iglesias, P. Aldeanueva-Potel, W. Ni, J. Pérez-Juste, I. Pastoriza-Santos, R.A. Alvarez-Puebla, B.N. Mbenkum, L.M. Liz-Marzán, Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today. 5, 21–27 (2010). https://doi.org/10.1016/j.nantod.2010.01.002

    Article  CAS  Google Scholar 

  65. J.F. Li, Z.Q. Tian, Shell-isolated nanoparticle-enhanced raman spectroscopy (SHINERS). Nature 464, 392 (2010). https://doi.org/10.1002/9781118703601.ch8

    Article  CAS  Google Scholar 

  66. R. Ghosh, A. Pal, P.K. Giri, Quantitative analysis of the phonon confinement effect in arbitrarily shaped Si nanocrystals decorated on Si nanowires and its correlation with the photoluminescence spectrum. J. Raman Spectrosc. 46, 624–631 (2015). https://doi.org/10.1002/jrs.4704

    Article  CAS  Google Scholar 

  67. L. Qin, S. Zou, C. Xue, A. Atkinson, G.C. Schatz, C.A. Mirkin, Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. 103, 13300–13303 (2006). https://doi.org/10.1073/pnas.0605889103

    Article  CAS  Google Scholar 

  68. D. He, B. Hu, Q.F. Yao, K. Wang, S.H. Yu, Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3, 3993–4002 (2009). https://doi.org/10.1021/nn900812f

    Article  CAS  Google Scholar 

  69. R. Touati, I. Trabelsi, M. BenRabeh, M. Kanzari, Structural and electrical properties of the Al/p-Cu2ZnSnS4 thin film schottky diode. J. Mater. Sci. Mater. Electron. 28, 5315–5322 (2017). https://doi.org/10.1007/s10854-016-6189-3

    Article  CAS  Google Scholar 

  70. Y. Atasoy, M.A. Olgar, E. Bacaksiz, Structural, optical and Schottky diode properties of Cu2ZnSnS4 thin films grown by two-stage method. J. Mater. Sci. Mater. Electron. 30, 10435–10442 (2019). https://doi.org/10.1007/s10854-019-01385-y

    Article  CAS  Google Scholar 

  71. A. GencerImer, A. Korkut, W.A. Farooq, A. Dere, M. Atif, A. Hanif, A. Karabulut, Interface controlling study of silicon based Schottky diode by organic layer. J. Mater. Sci. Mater. Electron. 30, 19239–19246 (2019). https://doi.org/10.1007/s10854-019-02282-0

    Article  CAS  Google Scholar 

  72. A. Ortiz-conde, F.J. Garcı, Extraction of non-ideal junction model parameters from the explicit analytic solutions of its I–V characteristics. Solid. State. Electron. 49, 465–472 (2005). https://doi.org/10.1016/j.sse.2004.12.001

    Article  CAS  Google Scholar 

  73. Z. Yuan, J. Yu, W. Ma, Y. Jiang, A photodiode with high rectification ratio based on well-aligned ZnO nanowire arrays and regioregular poly(3-hexylthiophene-2,5-diyl) hybrid heterojunction. Appl. Phys. A 106, 511–515 (2012). https://doi.org/10.1007/s00339-011-6756-7

    Article  CAS  Google Scholar 

  74. A. Tataroǧlu, F.Z. Pür, The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes. Phys. Scr. (2013). https://doi.org/10.1088/0031-8949/88/01/015801

    Article  Google Scholar 

  75. J.M. Shah, E.F. Schubert, Experimental analysis and theoretical model for anomalously high ideality factors (n20) in AlGaN/GaN p-n junction diodes. J. Appl. Phys. 94, 2627–2630 (2003). https://doi.org/10.1063/1.1593218

    Article  CAS  Google Scholar 

  76. G. Çankaya, N. Uçar, Schottky barrier height dependence on the metal work function for p-type Si schottky diodes. Zeitschrift Fur Naturforsch. A 59, 795–798 (2004). https://doi.org/10.1515/zna-2004-1112

    Article  Google Scholar 

  77. W. Mönch, Metal-semiconductor contacts: electronic properties. Surf. Sci. 299–300, 928–944 (1994). https://doi.org/10.1016/0039-6028(94)90707-2

    Article  Google Scholar 

  78. J. Tersoff, Schottky barriers and semiconductor band structures. Phys. Rev. B 32, 6968–6971 (1985). https://doi.org/10.1103/PhysRevB.32.6968

    Article  CAS  Google Scholar 

  79. G. Myburg, F.D. Auret, W.E. Meyer, C.W. Louw, M.J. Van Staden, Summary of Schottky barrier height data on epitaxially grown n- and p-GaAs. Thin Solid Films 325, 181–186 (1998). https://doi.org/10.1016/S0040-6090(98)00428-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UM Faculty Research Grant (GPF034B-2018) and Fundamental Research Grant Scheme (FP038-2017A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nur Fatin Farhanah binti Nazarudin or Boon Tong Goh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarudin, N.F.F.b., Rizan, N., Talik, N.A. et al. Fabrication of DNA/NiSi NWs and Ag NPs-NiSi NWs-based Schottky diodes for DNA detection with fast response time. J Mater Sci: Mater Electron 32, 7889–7905 (2021). https://doi.org/10.1007/s10854-021-05513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05513-5

Navigation