Skip to main content

Advertisement

Log in

Preparation of Ce-doped ZnO hollow spheres and their application as a light scattering layer in dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ce-doped ZnO hollow spheres (Ce@ZHSp) with various Ce-contents of 0, 0.25, 0.50 and 1.0 mol% were synthesized via a template-free hydrothermal method. The calcined samples were characterized using XRD, FESEM, TEM, BET–BJH and UV–Vis spectroscopic techniques. The analytical results showed that all the samples possessed a hexagonal wurtzite structure. The crystallite size of Ce@ZHSp decreased with increasing Ce-content. Calcined samples had a hollow sphere morphology with an average diameter range of 4.63–5.16 µm. Diffuse reflectance was increased by adding an appropriate Ce-dopant of 0.25 mol% into the ZnO hollow spheres. The energy-conversion efficiency of a dye-sensitized solar cell was examined under the A.M. 1.5 direct spectrum. These results showed that the highest efficiency was derived from a bilayer photoanode using 0.25 mol% Ce-doped ZnO hollow spheres as a light scattering layer. This finding was related to an increase in the amount of dye adsorption and a photonic reflection effect originating from the relatively larger particle sizes with higher porosity compared to the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Chauhan, M. Shinde, A. Kumar, S. Gosavi, D.P. Amalnerkar, Hierarchical zinc oxide pomegranate and hollow sphere structures as efficient photoanodes for dye-sensitized solar cells. Micropor. Mesopor. Mater. 226, 201–208 (2016)

    Article  CAS  Google Scholar 

  2. J. Xu, K. Fan, W. Shi, K. Li, T. Peng, Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Sol. Energy 101, 150–159 (2014)

    Article  CAS  Google Scholar 

  3. M.K. Nazeeruddin, E. Baranoff, M. Gratzel, Dye-sensitized solar cells: a brief overview. Sol. Energy 85, 1172–1178 (2011)

    Article  CAS  Google Scholar 

  4. S. Borbon, S. Lugo, D. Pourjafari, N.P. Aguilar, G. Oskam, I. Lopez, Open circuit voltage (VOC) enhancement in TiO2-based DSSCs: incorporation of ZnO nanoflowers and Au nanoparticles. ACS Omeca 5, 10799–10986 (2020)

    Google Scholar 

  5. J. Jiang, K. Zhang, X. Chen, F. Zhao, T. Xie, D. Wang, Y. Lin, Porous Ce-doped ZnO hollow sphere with enhanced photodegradation activity for artificial waste water. J. Alloy. Comp. 699, 907–913 (2017)

    Article  CAS  Google Scholar 

  6. P. Prasongsook, V. Lachom, N. Kenyota, P. Laokul, Characterization and photocatalytic performance of hollow zinc oxide microspheres prepared via a template-free hydrothermal method. Mater. Chem. Phys. 237, 121863 (2019)

    Article  Google Scholar 

  7. Y. Bao, C. Feng, C. Wang, J. Ma, One-step hydrothermal synthesis of hollow ZnO microspheres with enhanced performance for polyacrylate. Prog. Org. Coat. 112, 270–277 (2017)

    Article  CAS  Google Scholar 

  8. Y. Bao, C. Wang, J. Ma, A two-step hydrothermal route for synthesis hollow urchin-like ZnO microspheres. Ceram. Inter. 42, 10289–10296 (2016)

    Article  CAS  Google Scholar 

  9. V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, Rare earth doped zinc oxide nanophosphor powder: A future material for solid state lighting and solar cells. ACS Photonics 4, 2613–2637 (2017)

    Article  CAS  Google Scholar 

  10. Y. Li, J. Liu, X. Lian, T. Lu, F. Zhao, Morphology, photoluminescence and gas sensing of Ce-doped ZnO microspheres. Trans. Nonferrous Met. Soc. China 25, 3657–3663 (2015)

    Article  CAS  Google Scholar 

  11. S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. Lagemaat, A.J. Frank, Standing wave enhancement of red absorbance and photocurrent in dye sensitized titanium dioxide photoelectrodes coupled to photonic crystal. J. Am. Chem. Soc. 125, 6306–6310 (2003)

    Article  CAS  Google Scholar 

  12. H.J. Koo, Y.J. Kim, Y.H. Lee, W.I. Lee, K. Kim, N.G. Park, Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv. Mater. 20, 195–199 (2008)

    Article  CAS  Google Scholar 

  13. I.G. Yu, Y.J. Kim, H.J. Kim, C. Lee, W.I. Lee, Size-dependent light-scattering effect of nanoporous TiO2 spheres in dye-sensitized solar cells. J. Mater. Chem. 21, 532–538 (2011)

    Article  CAS  Google Scholar 

  14. L. Lu, R. Li, K. Fan, T. Peng, Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol. Energy. 84, 844–853 (2010)

    Article  CAS  Google Scholar 

  15. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248, 1381–1389 (2004)

    Article  CAS  Google Scholar 

  16. L. Wang, C. Ma, X. Ru, Z. Zheng-Guo, D. Wu, S. Zhang, G. Yu, Y. Hu, J. Wang, Facile synthesis of ZnO hollow microspheres and their high performance in photocatalytic degradation and dye sensitized solar cells. J. Alloy Comp. 647, 57–62 (2015)

    Article  CAS  Google Scholar 

  17. N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, R. Poonguzhali, The effect of Ce4 + incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles. Mater. Charact. 97, 37–46 (2014)

    Article  CAS  Google Scholar 

  18. S. Kumar, S. Jayaraman, Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Sol. Energy 171, 914–928 (2018)

    Article  Google Scholar 

  19. L. Chu, Z. Qin, J. Yang, Anatase TiO2 nanoparticles with exposed 001 facets for efficient dye-sensitized solar cells. Sci. Rep. 5, 12143 (2015). https://doi.org/10.1038/srep12143

    Article  CAS  Google Scholar 

  20. N.F. Djaja, R. Saleh, Characteristics and photocatalytic activities of Ce-doped ZnO nanoparticles. Mater. Sci. Appl. 4, 145–152 (2013)

    CAS  Google Scholar 

  21. G.X. Wan, S.Y. Ma, X.B. Li, F.M. Li, H.Q. Bian, L.P. Zhang, W.Q. Li, Synthesis and acetone sensing properties of Ce-doped ZnO nanofibers. Mater. Let. 114, 103–106 (2014)

    Article  CAS  Google Scholar 

  22. P. Laokul, S. Arthan, S. Maensiri, E. Swatsitang, Magnetic and optical properties of CoFe2O4 nanoparticles synthesized by reverse micelle microemulsion method. J. Supercond. Nov. Magn. 28, 2483–2489 (2015)

    Article  CAS  Google Scholar 

  23. V. Lachom, P. Poolcharuansin, P. Laokul, Preparation, characterizations and photocatalytic activity of a ZnO/TiO2 nanocomposite. Mater. Res. Express 4, 035006 (2017)

    Article  Google Scholar 

  24. M. Khannam, S.K. Dolui, Cerium doped TiO2 photoanode for an efficient quasi-solid state dye sensitized solar cells based on polyethylene oxide/multiwalled carbon nanotube/polyaniline gel electrolyte. Sol. Energy 150, 55–65 (2017)

    Article  CAS  Google Scholar 

  25. A. Chelouche, T. Touan, M. Tazerout, F. Boudjouan, D. Djouadi, A. Doghmane, Low cerium doping investigation on structural and photoluminescence properties of sol-gel ZnO thin films. J. Luminescence 181, 448–454 (2017)

    Article  CAS  Google Scholar 

  26. C. Jayachandraiah, G. Krishnaiah, Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. J. Mater Sci. 51, 7058–7066 (2017)

    Article  Google Scholar 

  27. G.L. Bhagyalekshmi, A.P. Neethu-Sha, D.N. Rajendran, Temperature-independent photoluminescence response in ZnO: Ce nanophosphor. Bull. Mater Sci. 40, 1429–1434 (2017)

    Article  CAS  Google Scholar 

  28. C. Jayachandraiah, G. Krishnaiah, K.S. Kumar, Ce induced structural and optical properties of Ce doped ZnO nanoparticles. Int. J. Chem. Technol. Res. 6, 3378–3381 (2014)

    CAS  Google Scholar 

  29. W. Maiaugree, S. Pimanpang, W. Jarernboon, V. Amornkitbamrung, Influence of acid modification multiwall carbon nanotube counter electrodes on the glass and flexible dye-sensitized solar cell performance. Inter. J. Photoenergy. 12, 1–10 (2016)

    Article  Google Scholar 

  30. Z.A. Alothman, Review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874–2902 (2012). https://doi.org/10.3390/ma5122874

    Article  CAS  Google Scholar 

  31. J. Zhang, W. Que, Q. Jia, P. Zhong, Y. Liao, X. Ye, Y. Ding, Novel bilayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells. J. Alloy Comp. 509, 7421–7426 (2011)

    Article  CAS  Google Scholar 

  32. T.P. Chou, Q. Zhang, G.E. Fryxell, G. Cao, Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater. 19(18), 2588–2582 (2007)

    Article  CAS  Google Scholar 

  33. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)

    Article  CAS  Google Scholar 

  34. A. Zatirostami, Increasing the efficiency of TiO2-based DSSC by means of a double layer RF-sputtered thin film blocking layer. Optik. 207, 164419–164426 (2020)

    Article  Google Scholar 

  35. D. Zhao, T.Y. Peng, L.L. Lu, P. Cai, P. Jiang, Z.Q. Bian, Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J. Phys. Chem. C 112, 8486–8494 (2008)

    Article  CAS  Google Scholar 

  36. Y.Z. Zheng, X. Tao, L.X. Wang, H. Xu, Q. Hou, W.L. Zhou, J.F. Chen, Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 22, 928–934 (2009)

    Article  Google Scholar 

  37. E. Cerrato, C. Gionco, M.C. Paganini, E. Giamello, E. Albanese, G. Pacchioni, Origin of visible light photoactivity of the CeO2/ZnO heterojunction. ACS Appl. Energy Mater 1, 4247–4260 (2018)

    Article  CAS  Google Scholar 

  38. A. Banik, M.S. Ansari, T.K. Sahu, M. Qureshi, Understanding the role of silica nanospheres for its light scattering and energy barrier property in enhancing the photovoltaic performance of ZnO based solar cells. Phys. Chem. Chem. Phys. 18, 27818–27828 (2016)

    Article  CAS  Google Scholar 

  39. Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K. Kim, W.I. Lee, Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 21, 3668–3673 (2009)

    Article  CAS  Google Scholar 

  40. J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, Effect of cerium doping in TiO2 photoanode on the electron transport of dye-sensitized solar cells. J. Phys. Chem. C 116, 19182–19190 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Santi Maensiri and the Advance Materials Physics Laboratory (AMP), School of Physics, Institute of Science, Suranaree University of Technology for the use of their hydrothermal reactor facility. This research was financially supported by Mahasarakham University and the Torey Science Foundation, Japan in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paveena Laokul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenyota, N., Maiaugree, W. & Laokul, P. Preparation of Ce-doped ZnO hollow spheres and their application as a light scattering layer in dye-sensitized solar cells. J Mater Sci: Mater Electron 32, 3782–3796 (2021). https://doi.org/10.1007/s10854-020-05122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05122-8

Navigation